| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saluni | Structured version Visualization version GIF version | ||
| Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saluni | ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif0 4358 | . 2 ⊢ (∪ 𝑆 ∖ ∅) = ∪ 𝑆 | |
| 2 | 0sal 46316 | . . 3 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
| 3 | saldifcl 46315 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → (∪ 𝑆 ∖ ∅) ∈ 𝑆) | |
| 4 | 2, 3 | mpdan 687 | . 2 ⊢ (𝑆 ∈ SAlg → (∪ 𝑆 ∖ ∅) ∈ 𝑆) |
| 5 | 1, 4 | eqeltrrid 2840 | 1 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 ∪ cuni 4888 SAlgcsalg 46304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-pw 4582 df-uni 4889 df-salg 46305 |
| This theorem is referenced by: intsaluni 46325 unisalgen 46336 salgencntex 46339 salunid 46349 |
| Copyright terms: Public domain | W3C validator |