Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluni Structured version   Visualization version   GIF version

Theorem saluni 46321
Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluni (𝑆 ∈ SAlg → 𝑆𝑆)

Proof of Theorem saluni
StepHypRef Expression
1 dif0 4358 . 2 ( 𝑆 ∖ ∅) = 𝑆
2 0sal 46316 . . 3 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
3 saldifcl 46315 . . 3 ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → ( 𝑆 ∖ ∅) ∈ 𝑆)
42, 3mpdan 687 . 2 (𝑆 ∈ SAlg → ( 𝑆 ∖ ∅) ∈ 𝑆)
51, 4eqeltrrid 2840 1 (𝑆 ∈ SAlg → 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3928  c0 4313   cuni 4888  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-ss 3948  df-nul 4314  df-pw 4582  df-uni 4889  df-salg 46305
This theorem is referenced by:  intsaluni  46325  unisalgen  46336  salgencntex  46339  salunid  46349
  Copyright terms: Public domain W3C validator