![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saluni | Structured version Visualization version GIF version |
Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saluni | ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4377 | . 2 ⊢ (∪ 𝑆 ∖ ∅) = ∪ 𝑆 | |
2 | 0sal 45941 | . . 3 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
3 | saldifcl 45940 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → (∪ 𝑆 ∖ ∅) ∈ 𝑆) | |
4 | 2, 3 | mpdan 685 | . 2 ⊢ (𝑆 ∈ SAlg → (∪ 𝑆 ∖ ∅) ∈ 𝑆) |
5 | 1, 4 | eqeltrrid 2831 | 1 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∖ cdif 3944 ∅c0 4325 ∪ cuni 4913 SAlgcsalg 45929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3950 df-ss 3964 df-nul 4326 df-pw 4609 df-uni 4914 df-salg 45930 |
This theorem is referenced by: intsaluni 45950 unisalgen 45961 salgencntex 45964 salunid 45974 |
Copyright terms: Public domain | W3C validator |