Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluni Structured version   Visualization version   GIF version

Theorem saluni 46246
Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluni (𝑆 ∈ SAlg → 𝑆𝑆)

Proof of Theorem saluni
StepHypRef Expression
1 dif0 4400 . 2 ( 𝑆 ∖ ∅) = 𝑆
2 0sal 46241 . . 3 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
3 saldifcl 46240 . . 3 ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → ( 𝑆 ∖ ∅) ∈ 𝑆)
42, 3mpdan 686 . 2 (𝑆 ∈ SAlg → ( 𝑆 ∖ ∅) ∈ 𝑆)
51, 4eqeltrrid 2849 1 (𝑆 ∈ SAlg → 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3973  c0 4352   cuni 4931  SAlgcsalg 46229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-pw 4624  df-uni 4932  df-salg 46230
This theorem is referenced by:  intsaluni  46250  unisalgen  46261  salgencntex  46264  salunid  46274
  Copyright terms: Public domain W3C validator