Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluni Structured version   Visualization version   GIF version

Theorem saluni 43755
Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluni (𝑆 ∈ SAlg → 𝑆𝑆)

Proof of Theorem saluni
StepHypRef Expression
1 dif0 4303 . 2 ( 𝑆 ∖ ∅) = 𝑆
2 0sal 43751 . . 3 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
3 saldifcl 43750 . . 3 ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → ( 𝑆 ∖ ∅) ∈ 𝑆)
42, 3mpdan 683 . 2 (𝑆 ∈ SAlg → ( 𝑆 ∖ ∅) ∈ 𝑆)
51, 4eqeltrrid 2844 1 (𝑆 ∈ SAlg → 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3880  c0 4253   cuni 4836  SAlgcsalg 43739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-uni 4837  df-salg 43740
This theorem is referenced by:  intsaluni  43758  unisalgen  43769  salgencntex  43772  salunid  43782
  Copyright terms: Public domain W3C validator