Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfconst Structured version   Visualization version   GIF version

Theorem smfconst 46740
Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfconst.x 𝑥𝜑
smfconst.s (𝜑𝑆 ∈ SAlg)
smfconst.a (𝜑𝐴 𝑆)
smfconst.b (𝜑𝐵 ∈ ℝ)
smfconst.f 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
smfconst (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfconst
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfconst.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 nfmpt1 5208 . . 3 𝑥(𝑥𝐴𝐵)
31, 2nfcxfr 2890 . 2 𝑥𝐹
4 nfv 1914 . 2 𝑎𝜑
5 smfconst.s . 2 (𝜑𝑆 ∈ SAlg)
6 smfconst.a . 2 (𝜑𝐴 𝑆)
7 smfconst.x . . 3 𝑥𝜑
8 smfconst.b . . . 4 (𝜑𝐵 ∈ ℝ)
98adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
107, 9, 1fmptdf 7091 . 2 (𝜑𝐹:𝐴⟶ℝ)
11 nfv 1914 . . . . . . . 8 𝑥 𝑎 ∈ ℝ
127, 11nfan 1899 . . . . . . 7 𝑥(𝜑𝑎 ∈ ℝ)
13 nfv 1914 . . . . . . 7 𝑥 𝐵 < 𝑎
1412, 13nfan 1899 . . . . . 6 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎)
158ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
16 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎)
1714, 15, 1, 16pimconstlt1 46693 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = 𝐴)
18 eqidd 2731 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴)
19 sseqin2 4188 . . . . . . . 8 (𝐴 𝑆 ↔ ( 𝑆𝐴) = 𝐴)
206, 19sylib 218 . . . . . . 7 (𝜑 → ( 𝑆𝐴) = 𝐴)
2120eqcomd 2736 . . . . . 6 (𝜑𝐴 = ( 𝑆𝐴))
2221ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = ( 𝑆𝐴))
2317, 18, 223eqtrd 2769 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ( 𝑆𝐴))
245ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg)
255uniexd 7720 . . . . . . 7 (𝜑 𝑆 ∈ V)
2625, 6ssexd 5281 . . . . . 6 (𝜑𝐴 ∈ V)
2726ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V)
2824salunid 46344 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆𝑆)
29 eqid 2730 . . . . 5 ( 𝑆𝐴) = ( 𝑆𝐴)
3024, 27, 28, 29elrestd 45095 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ( 𝑆𝐴) ∈ (𝑆t 𝐴))
3123, 30eqeltrd 2829 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
32 nfv 1914 . . . . . 6 𝑥 ¬ 𝐵 < 𝑎
3312, 32nfan 1899 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎)
348ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
35 rexr 11226 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635ad2antlr 727 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*)
37 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎)
38 simplr 768 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ)
3938, 34lenltd 11326 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎𝐵 ↔ ¬ 𝐵 < 𝑎))
4037, 39mpbird 257 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎𝐵)
4133, 34, 1, 36, 40pimconstlt0 46692 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ∅)
42 eqid 2730 . . . . . . 7 (𝑆t 𝐴) = (𝑆t 𝐴)
435, 26, 42subsalsal 46350 . . . . . 6 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
44430sald 46341 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐴))
4544ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆t 𝐴))
4641, 45eqeltrd 2829 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
4731, 46pm2.61dan 812 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
483, 4, 5, 6, 10, 47issmfdf 46728 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  {crab 3408  Vcvv 3450  cin 3915  wss 3916  c0 4298   cuni 4873   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  cr 11073  *cxr 11213   < clt 11214  cle 11215  t crest 17389  SAlgcsalg 46299  SMblFncsmblfn 46686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cc 10394  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-acn 9901  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-ioo 13316  df-ico 13318  df-rest 17391  df-salg 46300  df-smblfn 46687
This theorem is referenced by:  smfmbfcex  46751  smfmulc1  46787
  Copyright terms: Public domain W3C validator