Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfconst | Structured version Visualization version GIF version |
Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfconst.x | ⊢ Ⅎ𝑥𝜑 |
smfconst.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfconst.a | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
smfconst.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
smfconst.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
smfconst | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfconst.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfmpt1 5128 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | nfcxfr 2918 | . 2 ⊢ Ⅎ𝑥𝐹 |
4 | nfv 1916 | . 2 ⊢ Ⅎ𝑎𝜑 | |
5 | smfconst.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | smfconst.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
7 | smfconst.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
8 | smfconst.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | 8 | adantr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
10 | 7, 9, 1 | fmptdf 6870 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
11 | nfv 1916 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
12 | 7, 11 | nfan 1901 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
13 | nfv 1916 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐵 < 𝑎 | |
14 | 12, 13 | nfan 1901 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) |
15 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ) |
16 | simpr 489 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎) | |
17 | 14, 15, 1, 16 | pimconstlt1 43696 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = 𝐴) |
18 | eqidd 2760 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴) | |
19 | sseqin2 4121 | . . . . . . . 8 ⊢ (𝐴 ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∩ 𝐴) = 𝐴) | |
20 | 6, 19 | sylib 221 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝑆 ∩ 𝐴) = 𝐴) |
21 | 20 | eqcomd 2765 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (∪ 𝑆 ∩ 𝐴)) |
22 | 21 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = (∪ 𝑆 ∩ 𝐴)) |
23 | 17, 18, 22 | 3eqtrd 2798 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (∪ 𝑆 ∩ 𝐴)) |
24 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg) |
25 | 5 | uniexd 7464 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
26 | 25, 6 | ssexd 5192 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V) |
28 | 24 | salunid 43349 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ∪ 𝑆 ∈ 𝑆) |
29 | eqid 2759 | . . . . 5 ⊢ (∪ 𝑆 ∩ 𝐴) = (∪ 𝑆 ∩ 𝐴) | |
30 | 24, 27, 28, 29 | elrestd 42107 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → (∪ 𝑆 ∩ 𝐴) ∈ (𝑆 ↾t 𝐴)) |
31 | 23, 30 | eqeltrd 2853 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
32 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐵 < 𝑎 | |
33 | 12, 32 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) |
34 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ) |
35 | rexr 10715 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
36 | 35 | ad2antlr 727 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*) |
37 | simpr 489 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎) | |
38 | simplr 769 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ) | |
39 | 38, 34 | lenltd 10814 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑎)) |
40 | 37, 39 | mpbird 260 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ≤ 𝐵) |
41 | 33, 34, 1, 36, 40 | pimconstlt0 43695 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = ∅) |
42 | eqid 2759 | . . . . . . 7 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
43 | 5, 26, 42 | subsalsal 43355 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
44 | 43 | 0sald 43346 | . . . . 5 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐴)) |
45 | 44 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆 ↾t 𝐴)) |
46 | 41, 45 | eqeltrd 2853 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
47 | 31, 46 | pm2.61dan 813 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
48 | 3, 4, 5, 6, 10, 47 | issmfdf 43727 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 {crab 3075 Vcvv 3410 ∩ cin 3858 ⊆ wss 3859 ∅c0 4226 ∪ cuni 4796 class class class wbr 5030 ↦ cmpt 5110 ‘cfv 6333 (class class class)co 7148 ℝcr 10564 ℝ*cxr 10702 < clt 10703 ≤ cle 10704 ↾t crest 16742 SAlgcsalg 43306 SMblFncsmblfn 43690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-inf2 9127 ax-cc 9885 ax-ac2 9913 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-se 5482 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-map 8416 df-pm 8417 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-card 9391 df-acn 9394 df-ac 9566 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-n0 11925 df-z 12011 df-uz 12273 df-ioo 12773 df-ico 12775 df-rest 16744 df-salg 43307 df-smblfn 43691 |
This theorem is referenced by: smfmbfcex 43749 smfmulc1 43784 |
Copyright terms: Public domain | W3C validator |