Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfconst Structured version   Visualization version   GIF version

Theorem smfconst 46721
Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfconst.x 𝑥𝜑
smfconst.s (𝜑𝑆 ∈ SAlg)
smfconst.a (𝜑𝐴 𝑆)
smfconst.b (𝜑𝐵 ∈ ℝ)
smfconst.f 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
smfconst (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfconst
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfconst.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 nfmpt1 5230 . . 3 𝑥(𝑥𝐴𝐵)
31, 2nfcxfr 2895 . 2 𝑥𝐹
4 nfv 1913 . 2 𝑎𝜑
5 smfconst.s . 2 (𝜑𝑆 ∈ SAlg)
6 smfconst.a . 2 (𝜑𝐴 𝑆)
7 smfconst.x . . 3 𝑥𝜑
8 smfconst.b . . . 4 (𝜑𝐵 ∈ ℝ)
98adantr 480 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
107, 9, 1fmptdf 7117 . 2 (𝜑𝐹:𝐴⟶ℝ)
11 nfv 1913 . . . . . . . 8 𝑥 𝑎 ∈ ℝ
127, 11nfan 1898 . . . . . . 7 𝑥(𝜑𝑎 ∈ ℝ)
13 nfv 1913 . . . . . . 7 𝑥 𝐵 < 𝑎
1412, 13nfan 1898 . . . . . 6 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎)
158ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
16 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎)
1714, 15, 1, 16pimconstlt1 46674 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = 𝐴)
18 eqidd 2735 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴)
19 sseqin2 4203 . . . . . . . 8 (𝐴 𝑆 ↔ ( 𝑆𝐴) = 𝐴)
206, 19sylib 218 . . . . . . 7 (𝜑 → ( 𝑆𝐴) = 𝐴)
2120eqcomd 2740 . . . . . 6 (𝜑𝐴 = ( 𝑆𝐴))
2221ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = ( 𝑆𝐴))
2317, 18, 223eqtrd 2773 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ( 𝑆𝐴))
245ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg)
255uniexd 7744 . . . . . . 7 (𝜑 𝑆 ∈ V)
2625, 6ssexd 5304 . . . . . 6 (𝜑𝐴 ∈ V)
2726ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V)
2824salunid 46325 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆𝑆)
29 eqid 2734 . . . . 5 ( 𝑆𝐴) = ( 𝑆𝐴)
3024, 27, 28, 29elrestd 45070 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ( 𝑆𝐴) ∈ (𝑆t 𝐴))
3123, 30eqeltrd 2833 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
32 nfv 1913 . . . . . 6 𝑥 ¬ 𝐵 < 𝑎
3312, 32nfan 1898 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎)
348ad2antrr 726 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
35 rexr 11289 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635ad2antlr 727 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*)
37 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎)
38 simplr 768 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ)
3938, 34lenltd 11389 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎𝐵 ↔ ¬ 𝐵 < 𝑎))
4037, 39mpbird 257 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎𝐵)
4133, 34, 1, 36, 40pimconstlt0 46673 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ∅)
42 eqid 2734 . . . . . . 7 (𝑆t 𝐴) = (𝑆t 𝐴)
435, 26, 42subsalsal 46331 . . . . . 6 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
44430sald 46322 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐴))
4544ad2antrr 726 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆t 𝐴))
4641, 45eqeltrd 2833 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
4731, 46pm2.61dan 812 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
483, 4, 5, 6, 10, 47issmfdf 46709 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  {crab 3419  Vcvv 3463  cin 3930  wss 3931  c0 4313   cuni 4887   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cr 11136  *cxr 11276   < clt 11277  cle 11278  t crest 17436  SAlgcsalg 46280  SMblFncsmblfn 46667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-ioo 13373  df-ico 13375  df-rest 17438  df-salg 46281  df-smblfn 46668
This theorem is referenced by:  smfmbfcex  46732  smfmulc1  46768
  Copyright terms: Public domain W3C validator