| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfconst | Structured version Visualization version GIF version | ||
| Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfconst.x | ⊢ Ⅎ𝑥𝜑 |
| smfconst.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfconst.a | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
| smfconst.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| smfconst.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| smfconst | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfconst.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfmpt1 5191 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | nfcxfr 2889 | . 2 ⊢ Ⅎ𝑥𝐹 |
| 4 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 5 | smfconst.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | smfconst.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
| 7 | smfconst.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 8 | smfconst.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 10 | 7, 9, 1 | fmptdf 7051 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 11 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
| 12 | 7, 11 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
| 13 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐵 < 𝑎 | |
| 14 | 12, 13 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) |
| 15 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ) |
| 16 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎) | |
| 17 | 14, 15, 1, 16 | pimconstlt1 46693 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = 𝐴) |
| 18 | eqidd 2730 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴) | |
| 19 | sseqin2 4174 | . . . . . . . 8 ⊢ (𝐴 ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∩ 𝐴) = 𝐴) | |
| 20 | 6, 19 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝑆 ∩ 𝐴) = 𝐴) |
| 21 | 20 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (∪ 𝑆 ∩ 𝐴)) |
| 22 | 21 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = (∪ 𝑆 ∩ 𝐴)) |
| 23 | 17, 18, 22 | 3eqtrd 2768 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (∪ 𝑆 ∩ 𝐴)) |
| 24 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg) |
| 25 | 5 | uniexd 7678 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
| 26 | 25, 6 | ssexd 5263 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V) |
| 28 | 24 | salunid 46344 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ∪ 𝑆 ∈ 𝑆) |
| 29 | eqid 2729 | . . . . 5 ⊢ (∪ 𝑆 ∩ 𝐴) = (∪ 𝑆 ∩ 𝐴) | |
| 30 | 24, 27, 28, 29 | elrestd 45096 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → (∪ 𝑆 ∩ 𝐴) ∈ (𝑆 ↾t 𝐴)) |
| 31 | 23, 30 | eqeltrd 2828 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 32 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐵 < 𝑎 | |
| 33 | 12, 32 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) |
| 34 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ) |
| 35 | rexr 11161 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 36 | 35 | ad2antlr 727 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*) |
| 37 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎) | |
| 38 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ) | |
| 39 | 38, 34 | lenltd 11262 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑎)) |
| 40 | 37, 39 | mpbird 257 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ≤ 𝐵) |
| 41 | 33, 34, 1, 36, 40 | pimconstlt0 46692 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = ∅) |
| 42 | eqid 2729 | . . . . . . 7 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
| 43 | 5, 26, 42 | subsalsal 46350 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
| 44 | 43 | 0sald 46341 | . . . . 5 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐴)) |
| 45 | 44 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆 ↾t 𝐴)) |
| 46 | 41, 45 | eqeltrd 2828 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 47 | 31, 46 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 48 | 3, 4, 5, 6, 10, 47 | issmfdf 46728 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {crab 3394 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ↾t crest 17324 SAlgcsalg 46299 SMblFncsmblfn 46686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-ioo 13252 df-ico 13254 df-rest 17326 df-salg 46300 df-smblfn 46687 |
| This theorem is referenced by: smfmbfcex 46751 smfmulc1 46787 |
| Copyright terms: Public domain | W3C validator |