Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfconst Structured version   Visualization version   GIF version

Theorem smfconst 41530
Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfconst.x 𝑥𝜑
smfconst.s (𝜑𝑆 ∈ SAlg)
smfconst.a (𝜑𝐴 𝑆)
smfconst.b (𝜑𝐵 ∈ ℝ)
smfconst.f 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
smfconst (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfconst
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfconst.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 nfmpt1 4905 . . 3 𝑥(𝑥𝐴𝐵)
31, 2nfcxfr 2904 . 2 𝑥𝐹
4 nfv 2009 . 2 𝑎𝜑
5 smfconst.s . 2 (𝜑𝑆 ∈ SAlg)
6 smfconst.a . 2 (𝜑𝐴 𝑆)
7 smfconst.x . . 3 𝑥𝜑
8 smfconst.b . . . 4 (𝜑𝐵 ∈ ℝ)
98adantr 472 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
107, 9, 1fmptdf 6576 . 2 (𝜑𝐹:𝐴⟶ℝ)
11 nfv 2009 . . . . . . . 8 𝑥 𝑎 ∈ ℝ
127, 11nfan 1998 . . . . . . 7 𝑥(𝜑𝑎 ∈ ℝ)
13 nfv 2009 . . . . . . 7 𝑥 𝐵 < 𝑎
1412, 13nfan 1998 . . . . . 6 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎)
158ad2antrr 717 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
16 simpr 477 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎)
1714, 15, 1, 16pimconstlt1 41487 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = 𝐴)
18 eqidd 2765 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴)
19 sseqin2 3978 . . . . . . . 8 (𝐴 𝑆 ↔ ( 𝑆𝐴) = 𝐴)
206, 19sylib 209 . . . . . . 7 (𝜑 → ( 𝑆𝐴) = 𝐴)
2120eqcomd 2770 . . . . . 6 (𝜑𝐴 = ( 𝑆𝐴))
2221ad2antrr 717 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = ( 𝑆𝐴))
2317, 18, 223eqtrd 2802 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ( 𝑆𝐴))
245ad2antrr 717 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg)
255uniexd 39864 . . . . . . 7 (𝜑 𝑆 ∈ V)
2625, 6ssexd 4965 . . . . . 6 (𝜑𝐴 ∈ V)
2726ad2antrr 717 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V)
2824salunid 41140 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆𝑆)
29 eqid 2764 . . . . 5 ( 𝑆𝐴) = ( 𝑆𝐴)
3024, 27, 28, 29elrestd 39873 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ( 𝑆𝐴) ∈ (𝑆t 𝐴))
3123, 30eqeltrd 2843 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
32 nfv 2009 . . . . . 6 𝑥 ¬ 𝐵 < 𝑎
3312, 32nfan 1998 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎)
348ad2antrr 717 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
35 rexr 10338 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635ad2antlr 718 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*)
37 simpr 477 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎)
38 simplr 785 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ)
3938, 34lenltd 10436 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎𝐵 ↔ ¬ 𝐵 < 𝑎))
4037, 39mpbird 248 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎𝐵)
4133, 34, 1, 36, 40pimconstlt0 41486 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ∅)
42 eqid 2764 . . . . . . 7 (𝑆t 𝐴) = (𝑆t 𝐴)
435, 26, 42subsalsal 41146 . . . . . 6 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
44430sald 41137 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐴))
4544ad2antrr 717 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆t 𝐴))
4641, 45eqeltrd 2843 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
4731, 46pm2.61dan 847 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
483, 4, 5, 6, 10, 47issmfdf 41518 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wnf 1878  wcel 2155  {crab 3058  Vcvv 3349  cin 3730  wss 3731  c0 4078   cuni 4593   class class class wbr 4808  cmpt 4887  cfv 6067  (class class class)co 6841  cr 10187  *cxr 10326   < clt 10327  cle 10328  t crest 16348  SAlgcsalg 41097  SMblFncsmblfn 41481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cc 9509  ax-ac2 9537  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-card 9015  df-acn 9018  df-ac 9189  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-n0 11538  df-z 11624  df-uz 11886  df-ioo 12380  df-ico 12382  df-rest 16350  df-salg 41098  df-smblfn 41482
This theorem is referenced by:  smfmbfcex  41540  smfmulc1  41575
  Copyright terms: Public domain W3C validator