| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfconst | Structured version Visualization version GIF version | ||
| Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfconst.x | ⊢ Ⅎ𝑥𝜑 |
| smfconst.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfconst.a | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
| smfconst.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| smfconst.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| smfconst | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfconst.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfmpt1 5188 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | nfcxfr 2892 | . 2 ⊢ Ⅎ𝑥𝐹 |
| 4 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 5 | smfconst.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | smfconst.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | |
| 7 | smfconst.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 8 | smfconst.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 10 | 7, 9, 1 | fmptdf 7050 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 11 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
| 12 | 7, 11 | nfan 1900 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
| 13 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐵 < 𝑎 | |
| 14 | 12, 13 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) |
| 15 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ) |
| 16 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎) | |
| 17 | 14, 15, 1, 16 | pimconstlt1 46810 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = 𝐴) |
| 18 | eqidd 2732 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴) | |
| 19 | sseqin2 4170 | . . . . . . . 8 ⊢ (𝐴 ⊆ ∪ 𝑆 ↔ (∪ 𝑆 ∩ 𝐴) = 𝐴) | |
| 20 | 6, 19 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (∪ 𝑆 ∩ 𝐴) = 𝐴) |
| 21 | 20 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (∪ 𝑆 ∩ 𝐴)) |
| 22 | 21 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = (∪ 𝑆 ∩ 𝐴)) |
| 23 | 17, 18, 22 | 3eqtrd 2770 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = (∪ 𝑆 ∩ 𝐴)) |
| 24 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg) |
| 25 | 5 | uniexd 7675 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑆 ∈ V) |
| 26 | 25, 6 | ssexd 5260 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 27 | 26 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V) |
| 28 | 24 | salunid 46461 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ∪ 𝑆 ∈ 𝑆) |
| 29 | eqid 2731 | . . . . 5 ⊢ (∪ 𝑆 ∩ 𝐴) = (∪ 𝑆 ∩ 𝐴) | |
| 30 | 24, 27, 28, 29 | elrestd 45215 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → (∪ 𝑆 ∩ 𝐴) ∈ (𝑆 ↾t 𝐴)) |
| 31 | 23, 30 | eqeltrd 2831 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 32 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐵 < 𝑎 | |
| 33 | 12, 32 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) |
| 34 | 8 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ) |
| 35 | rexr 11158 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 36 | 35 | ad2antlr 727 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*) |
| 37 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎) | |
| 38 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ) | |
| 39 | 38, 34 | lenltd 11259 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑎)) |
| 40 | 37, 39 | mpbird 257 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ≤ 𝐵) |
| 41 | 33, 34, 1, 36, 40 | pimconstlt0 46809 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} = ∅) |
| 42 | eqid 2731 | . . . . . . 7 ⊢ (𝑆 ↾t 𝐴) = (𝑆 ↾t 𝐴) | |
| 43 | 5, 26, 42 | subsalsal 46467 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾t 𝐴) ∈ SAlg) |
| 44 | 43 | 0sald 46458 | . . . . 5 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐴)) |
| 45 | 44 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆 ↾t 𝐴)) |
| 46 | 41, 45 | eqeltrd 2831 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 47 | 31, 46 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐴)) |
| 48 | 3, 4, 5, 6, 10, 47 | issmfdf 46845 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 ↾t crest 17324 SAlgcsalg 46416 SMblFncsmblfn 46803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-ioo 13249 df-ico 13251 df-rest 17326 df-salg 46417 df-smblfn 46804 |
| This theorem is referenced by: smfmbfcex 46868 smfmulc1 46904 |
| Copyright terms: Public domain | W3C validator |