Step | Hyp | Ref
| Expression |
1 | | hgmapfval.k |
. 2
β’ (π β (πΎ β π β§ π β π»)) |
2 | | hgmapfval.i |
. . . 4
β’ πΌ = ((HGMapβπΎ)βπ) |
3 | | hgmapval.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
4 | 3 | hgmapffval 40744 |
. . . . 5
β’ (πΎ β π β (HGMapβπΎ) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))})) |
5 | 4 | fveq1d 6890 |
. . . 4
β’ (πΎ β π β ((HGMapβπΎ)βπ) = ((π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))})βπ)) |
6 | 2, 5 | eqtrid 2784 |
. . 3
β’ (πΎ β π β πΌ = ((π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))})βπ)) |
7 | | fveq2 6888 |
. . . . . . . 8
β’ (π€ = π β ((DVecHβπΎ)βπ€) = ((DVecHβπΎ)βπ)) |
8 | | hgmapfval.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
9 | 7, 8 | eqtr4di 2790 |
. . . . . . 7
β’ (π€ = π β ((DVecHβπΎ)βπ€) = π) |
10 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π€ = π β ((HDMapβπΎ)βπ€) = ((HDMapβπΎ)βπ)) |
11 | | hgmapfval.m |
. . . . . . . . . 10
β’ π = ((HDMapβπΎ)βπ) |
12 | 10, 11 | eqtr4di 2790 |
. . . . . . . . 9
β’ (π€ = π β ((HDMapβπΎ)βπ€) = π) |
13 | | 2fveq3 6893 |
. . . . . . . . . . . . . . 15
β’ (π€ = π β (
Β·π β((LCDualβπΎ)βπ€)) = ( Β·π
β((LCDualβπΎ)βπ))) |
14 | 13 | oveqd 7422 |
. . . . . . . . . . . . . 14
β’ (π€ = π β (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£))) |
15 | 14 | eqeq2d 2743 |
. . . . . . . . . . . . 13
β’ (π€ = π β ((πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)) β (πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) |
16 | 15 | ralbidv 3177 |
. . . . . . . . . . . 12
β’ (π€ = π β (βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)) β βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) |
17 | 16 | riotabidv 7363 |
. . . . . . . . . . 11
β’ (π€ = π β (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))) = (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) |
18 | 17 | mpteq2dv 5249 |
. . . . . . . . . 10
β’ (π€ = π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)))) = (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£))))) |
19 | 18 | eleq2d 2819 |
. . . . . . . . 9
β’ (π€ = π β (π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)))) β π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))))) |
20 | 12, 19 | sbceqbid 3783 |
. . . . . . . 8
β’ (π€ = π β ([((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)))) β [π / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))))) |
21 | 20 | sbcbidv 3835 |
. . . . . . 7
β’ (π€ = π β
([(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)))) β
[(Baseβ(Scalarβπ’)) / π][π / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))))) |
22 | 9, 21 | sbceqbid 3783 |
. . . . . 6
β’ (π€ = π β ([((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)))) β [π / π’][(Baseβ(Scalarβπ’)) / π][π / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))))) |
23 | 8 | fvexi 6902 |
. . . . . . 7
β’ π β V |
24 | | fvex 6901 |
. . . . . . 7
β’
(Baseβ(Scalarβπ’)) β V |
25 | 11 | fvexi 6902 |
. . . . . . 7
β’ π β V |
26 | | simp2 1137 |
. . . . . . . . . 10
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β π = (Baseβ(Scalarβπ’))) |
27 | | simp1 1136 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β π’ = π) |
28 | 27 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β (Scalarβπ’) = (Scalarβπ)) |
29 | | hgmapfval.r |
. . . . . . . . . . . 12
β’ π
= (Scalarβπ) |
30 | 28, 29 | eqtr4di 2790 |
. . . . . . . . . . 11
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β (Scalarβπ’) = π
) |
31 | 30 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β (Baseβ(Scalarβπ’)) = (Baseβπ
)) |
32 | 26, 31 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β π = (Baseβπ
)) |
33 | | hgmapfval.b |
. . . . . . . . 9
β’ π΅ = (Baseβπ
) |
34 | 32, 33 | eqtr4di 2790 |
. . . . . . . 8
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β π = π΅) |
35 | | simp2 1137 |
. . . . . . . . . 10
β’ ((π’ = π β§ π = π΅ β§ π = π) β π = π΅) |
36 | | simp1 1136 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π = π΅ β§ π = π) β π’ = π) |
37 | 36 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π = π΅ β§ π = π) β (Baseβπ’) = (Baseβπ)) |
38 | | hgmapfval.v |
. . . . . . . . . . . . 13
β’ π = (Baseβπ) |
39 | 37, 38 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ ((π’ = π β§ π = π΅ β§ π = π) β (Baseβπ’) = π) |
40 | | simp3 1138 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π = π΅ β§ π = π) β π = π) |
41 | 36 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ ((π’ = π β§ π = π΅ β§ π = π) β (
Β·π βπ’) = ( Β·π
βπ)) |
42 | | hgmapfval.t |
. . . . . . . . . . . . . . . 16
β’ Β· = (
Β·π βπ) |
43 | 41, 42 | eqtr4di 2790 |
. . . . . . . . . . . . . . 15
β’ ((π’ = π β§ π = π΅ β§ π = π) β (
Β·π βπ’) = Β· ) |
44 | 43 | oveqd 7422 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π = π΅ β§ π = π) β (π₯( Β·π
βπ’)π£) = (π₯ Β· π£)) |
45 | 40, 44 | fveq12d 6895 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π = π΅ β§ π = π) β (πβ(π₯( Β·π
βπ’)π£)) = (πβ(π₯ Β· π£))) |
46 | | eqidd 2733 |
. . . . . . . . . . . . . . . . 17
β’ ((π’ = π β§ π = π΅ β§ π = π) β ((LCDualβπΎ)βπ) = ((LCDualβπΎ)βπ)) |
47 | | hgmapfval.c |
. . . . . . . . . . . . . . . . 17
β’ πΆ = ((LCDualβπΎ)βπ) |
48 | 46, 47 | eqtr4di 2790 |
. . . . . . . . . . . . . . . 16
β’ ((π’ = π β§ π = π΅ β§ π = π) β ((LCDualβπΎ)βπ) = πΆ) |
49 | 48 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ ((π’ = π β§ π = π΅ β§ π = π) β (
Β·π β((LCDualβπΎ)βπ)) = ( Β·π
βπΆ)) |
50 | | hgmapfval.s |
. . . . . . . . . . . . . . 15
β’ β = (
Β·π βπΆ) |
51 | 49, 50 | eqtr4di 2790 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π = π΅ β§ π = π) β (
Β·π β((LCDualβπΎ)βπ)) = β ) |
52 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π = π΅ β§ π = π) β π¦ = π¦) |
53 | 40 | fveq1d 6890 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π = π΅ β§ π = π) β (πβπ£) = (πβπ£)) |
54 | 51, 52, 53 | oveq123d 7426 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π = π΅ β§ π = π) β (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)) = (π¦ β (πβπ£))) |
55 | 45, 54 | eqeq12d 2748 |
. . . . . . . . . . . 12
β’ ((π’ = π β§ π = π΅ β§ π = π) β ((πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)) β (πβ(π₯ Β· π£)) = (π¦ β (πβπ£)))) |
56 | 39, 55 | raleqbidv 3342 |
. . . . . . . . . . 11
β’ ((π’ = π β§ π = π΅ β§ π = π) β (βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)) β βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£)))) |
57 | 35, 56 | riotaeqbidv 7364 |
. . . . . . . . . 10
β’ ((π’ = π β§ π = π΅ β§ π = π) β (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£))) = (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£)))) |
58 | 35, 57 | mpteq12dv 5238 |
. . . . . . . . 9
β’ ((π’ = π β§ π = π΅ β§ π = π) β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) = (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£))))) |
59 | 58 | eleq2d 2819 |
. . . . . . . 8
β’ ((π’ = π β§ π = π΅ β§ π = π) β (π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) β π β (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£)))))) |
60 | 34, 59 | syld3an2 1411 |
. . . . . . 7
β’ ((π’ = π β§ π = (Baseβ(Scalarβπ’)) β§ π = π) β (π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) β π β (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£)))))) |
61 | 23, 24, 25, 60 | sbc3ie 3862 |
. . . . . 6
β’
([π / π’][(Baseβ(Scalarβπ’)) / π][π / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ))(πβπ£)))) β π β (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£))))) |
62 | 22, 61 | bitrdi 286 |
. . . . 5
β’ (π€ = π β ([((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£)))) β π β (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£)))))) |
63 | 62 | eqabcdv 2868 |
. . . 4
β’ (π€ = π β {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))} = (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£))))) |
64 | | eqid 2732 |
. . . 4
β’ (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))}) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))}) |
65 | 63, 64, 33 | mptfvmpt 7226 |
. . 3
β’ (π β π» β ((π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπΎ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπΎ)βπ€))(πβπ£))))})βπ) = (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£))))) |
66 | 6, 65 | sylan9eq 2792 |
. 2
β’ ((πΎ β π β§ π β π») β πΌ = (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£))))) |
67 | 1, 66 | syl 17 |
1
β’ (π β πΌ = (π₯ β π΅ β¦ (β©π¦ β π΅ βπ£ β π (πβ(π₯ Β· π£)) = (π¦ β (πβπ£))))) |