Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfval Structured version   Visualization version   GIF version

Theorem hgmapfval 42005
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
Assertion
Ref Expression
hgmapfval (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Distinct variable groups:   𝑥,𝑣,𝑦,𝐾   𝑣,𝐵,𝑥,𝑦   𝑣,𝑀,𝑥,𝑦   𝑣,𝑈,𝑥,𝑦   𝑣,𝑉   𝑣,𝑊,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑥,𝑦,𝑣)   𝑅(𝑥,𝑦,𝑣)   (𝑥,𝑦,𝑣)   · (𝑥,𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣)   𝐼(𝑥,𝑦,𝑣)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑣)

Proof of Theorem hgmapfval
Dummy variables 𝑤 𝑎 𝑏 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapfval.k . 2 (𝜑 → (𝐾𝑌𝑊𝐻))
2 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
3 hgmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hgmapffval 42004 . . . . 5 (𝐾𝑌 → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
54fveq1d 6830 . . . 4 (𝐾𝑌 → ((HGMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
62, 5eqtrid 2780 . . 3 (𝐾𝑌𝐼 = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
7 fveq2 6828 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 hgmapfval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
10 fveq2 6828 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = ((HDMap‘𝐾)‘𝑊))
11 hgmapfval.m . . . . . . . . . 10 𝑀 = ((HDMap‘𝐾)‘𝑊)
1210, 11eqtr4di 2786 . . . . . . . . 9 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = 𝑀)
13 2fveq3 6833 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑤)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)))
1413oveqd 7369 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))
1514eqeq2d 2744 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1615ralbidv 3156 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1716riotabidv 7311 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))) = (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1817mpteq2dv 5187 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) = (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))))
1918eleq2d 2819 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2012, 19sbceqbid 3744 . . . . . . . 8 (𝑤 = 𝑊 → ([((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2120sbcbidv 3793 . . . . . . 7 (𝑤 = 𝑊 → ([(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
229, 21sbceqbid 3744 . . . . . 6 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
238fvexi 6842 . . . . . . 7 𝑈 ∈ V
24 fvex 6841 . . . . . . 7 (Base‘(Scalar‘𝑢)) ∈ V
2511fvexi 6842 . . . . . . 7 𝑀 ∈ V
26 simp2 1137 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘(Scalar‘𝑢)))
27 simp1 1136 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑢 = 𝑈)
2827fveq2d 6832 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = (Scalar‘𝑈))
29 hgmapfval.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑈)
3028, 29eqtr4di 2786 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = 𝑅)
3130fveq2d 6832 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Base‘(Scalar‘𝑢)) = (Base‘𝑅))
3226, 31eqtrd 2768 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘𝑅))
33 hgmapfval.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3432, 33eqtr4di 2786 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = 𝐵)
35 simp2 1137 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑏 = 𝐵)
36 simp1 1136 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑢 = 𝑈)
3736fveq2d 6832 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = (Base‘𝑈))
38 hgmapfval.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
3937, 38eqtr4di 2786 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = 𝑉)
40 simp3 1138 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑚 = 𝑀)
4136fveq2d 6832 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = ( ·𝑠𝑈))
42 hgmapfval.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑈)
4341, 42eqtr4di 2786 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = · )
4443oveqd 7369 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥( ·𝑠𝑢)𝑣) = (𝑥 · 𝑣))
4540, 44fveq12d 6835 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑀‘(𝑥 · 𝑣)))
46 eqidd 2734 . . . . . . . . . . . . . . . . 17 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊))
47 hgmapfval.c . . . . . . . . . . . . . . . . 17 𝐶 = ((LCDual‘𝐾)‘𝑊)
4846, 47eqtr4di 2786 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = 𝐶)
4948fveq2d 6832 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠𝐶))
50 hgmapfval.s . . . . . . . . . . . . . . 15 = ( ·𝑠𝐶)
5149, 50eqtr4di 2786 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = )
52 eqidd 2734 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑦 = 𝑦)
5340fveq1d 6830 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚𝑣) = (𝑀𝑣))
5451, 52, 53oveq123d 7373 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) = (𝑦 (𝑀𝑣)))
5545, 54eqeq12d 2749 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5639, 55raleqbidv 3313 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5735, 56riotaeqbidv 7312 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5835, 57mpteq12dv 5180 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
5958eleq2d 2819 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6034, 59syld3an2 1413 . . . . . . 7 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6123, 24, 25, 60sbc3ie 3815 . . . . . 6 ([𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
6222, 61bitrdi 287 . . . . 5 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6362eqabcdv 2867 . . . 4 (𝑤 = 𝑊 → {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))} = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
64 eqid 2733 . . . 4 (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})
6563, 64, 33mptfvmpt 7168 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
666, 65sylan9eq 2788 . 2 ((𝐾𝑌𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
671, 66syl 17 1 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wral 3048  [wsbc 3737  cmpt 5174  cfv 6486  crio 7308  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  LHypclh 40103  DVecHcdvh 41197  LCDualclcd 41705  HDMapchdma 41911  HGMapchg 42002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-hgmap 42003
This theorem is referenced by:  hgmapval  42006  hgmapfnN  42007
  Copyright terms: Public domain W3C validator