Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfval Structured version   Visualization version   GIF version

Theorem hgmapfval 40757
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHypβ€˜πΎ)
hgmapfval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hgmapfval.v 𝑉 = (Baseβ€˜π‘ˆ)
hgmapfval.t Β· = ( ·𝑠 β€˜π‘ˆ)
hgmapfval.r 𝑅 = (Scalarβ€˜π‘ˆ)
hgmapfval.b 𝐡 = (Baseβ€˜π‘…)
hgmapfval.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hgmapfval.s βˆ™ = ( ·𝑠 β€˜πΆ)
hgmapfval.m 𝑀 = ((HDMapβ€˜πΎ)β€˜π‘Š)
hgmapfval.i 𝐼 = ((HGMapβ€˜πΎ)β€˜π‘Š)
hgmapfval.k (πœ‘ β†’ (𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻))
Assertion
Ref Expression
hgmapfval (πœ‘ β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
Distinct variable groups:   π‘₯,𝑣,𝑦,𝐾   𝑣,𝐡,π‘₯,𝑦   𝑣,𝑀,π‘₯,𝑦   𝑣,π‘ˆ,π‘₯,𝑦   𝑣,𝑉   𝑣,π‘Š,π‘₯,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑣)   𝐢(π‘₯,𝑦,𝑣)   𝑅(π‘₯,𝑦,𝑣)   βˆ™ (π‘₯,𝑦,𝑣)   Β· (π‘₯,𝑦,𝑣)   𝐻(π‘₯,𝑦,𝑣)   𝐼(π‘₯,𝑦,𝑣)   𝑉(π‘₯,𝑦)   π‘Œ(π‘₯,𝑦,𝑣)

Proof of Theorem hgmapfval
Dummy variables 𝑀 π‘Ž 𝑏 π‘š 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapfval.k . 2 (πœ‘ β†’ (𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻))
2 hgmapfval.i . . . 4 𝐼 = ((HGMapβ€˜πΎ)β€˜π‘Š)
3 hgmapval.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
43hgmapffval 40756 . . . . 5 (𝐾 ∈ π‘Œ β†’ (HGMapβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))}))
54fveq1d 6894 . . . 4 (𝐾 ∈ π‘Œ β†’ ((HGMapβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))})β€˜π‘Š))
62, 5eqtrid 2785 . . 3 (𝐾 ∈ π‘Œ β†’ 𝐼 = ((𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))})β€˜π‘Š))
7 fveq2 6892 . . . . . . . 8 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘Š))
8 hgmapfval.u . . . . . . . 8 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
97, 8eqtr4di 2791 . . . . . . 7 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = π‘ˆ)
10 fveq2 6892 . . . . . . . . . 10 (𝑀 = π‘Š β†’ ((HDMapβ€˜πΎ)β€˜π‘€) = ((HDMapβ€˜πΎ)β€˜π‘Š))
11 hgmapfval.m . . . . . . . . . 10 𝑀 = ((HDMapβ€˜πΎ)β€˜π‘Š)
1210, 11eqtr4di 2791 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((HDMapβ€˜πΎ)β€˜π‘€) = 𝑀)
13 2fveq3 6897 . . . . . . . . . . . . . . 15 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€)) = ( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š)))
1413oveqd 7426 . . . . . . . . . . . . . 14 (𝑀 = π‘Š β†’ (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)))
1514eqeq2d 2744 . . . . . . . . . . . . 13 (𝑀 = π‘Š β†’ ((π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)) ↔ (π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))
1615ralbidv 3178 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ (βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)) ↔ βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))
1716riotabidv 7367 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))) = (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))
1817mpteq2dv 5251 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))) = (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)))))
1918eleq2d 2820 . . . . . . . . 9 (𝑀 = π‘Š β†’ (π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))))
2012, 19sbceqbid 3785 . . . . . . . 8 (𝑀 = π‘Š β†’ ([((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ [𝑀 / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))))
2120sbcbidv 3837 . . . . . . 7 (𝑀 = π‘Š β†’ ([(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ [(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][𝑀 / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))))
229, 21sbceqbid 3785 . . . . . 6 (𝑀 = π‘Š β†’ ([((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ [π‘ˆ / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][𝑀 / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))))))
238fvexi 6906 . . . . . . 7 π‘ˆ ∈ V
24 fvex 6905 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘’)) ∈ V
2511fvexi 6906 . . . . . . 7 𝑀 ∈ V
26 simp2 1138 . . . . . . . . . 10 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)))
27 simp1 1137 . . . . . . . . . . . . 13 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ 𝑒 = π‘ˆ)
2827fveq2d 6896 . . . . . . . . . . . 12 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ (Scalarβ€˜π‘’) = (Scalarβ€˜π‘ˆ))
29 hgmapfval.r . . . . . . . . . . . 12 𝑅 = (Scalarβ€˜π‘ˆ)
3028, 29eqtr4di 2791 . . . . . . . . . . 11 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ (Scalarβ€˜π‘’) = 𝑅)
3130fveq2d 6896 . . . . . . . . . 10 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ (Baseβ€˜(Scalarβ€˜π‘’)) = (Baseβ€˜π‘…))
3226, 31eqtrd 2773 . . . . . . . . 9 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ 𝑏 = (Baseβ€˜π‘…))
33 hgmapfval.b . . . . . . . . 9 𝐡 = (Baseβ€˜π‘…)
3432, 33eqtr4di 2791 . . . . . . . 8 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ 𝑏 = 𝐡)
35 simp2 1138 . . . . . . . . . 10 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ 𝑏 = 𝐡)
36 simp1 1137 . . . . . . . . . . . . . 14 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ 𝑒 = π‘ˆ)
3736fveq2d 6896 . . . . . . . . . . . . 13 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (Baseβ€˜π‘’) = (Baseβ€˜π‘ˆ))
38 hgmapfval.v . . . . . . . . . . . . 13 𝑉 = (Baseβ€˜π‘ˆ)
3937, 38eqtr4di 2791 . . . . . . . . . . . 12 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (Baseβ€˜π‘’) = 𝑉)
40 simp3 1139 . . . . . . . . . . . . . 14 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ π‘š = 𝑀)
4136fveq2d 6896 . . . . . . . . . . . . . . . 16 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ( ·𝑠 β€˜π‘’) = ( ·𝑠 β€˜π‘ˆ))
42 hgmapfval.t . . . . . . . . . . . . . . . 16 Β· = ( ·𝑠 β€˜π‘ˆ)
4341, 42eqtr4di 2791 . . . . . . . . . . . . . . 15 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ( ·𝑠 β€˜π‘’) = Β· )
4443oveqd 7426 . . . . . . . . . . . . . 14 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (π‘₯( ·𝑠 β€˜π‘’)𝑣) = (π‘₯ Β· 𝑣))
4540, 44fveq12d 6899 . . . . . . . . . . . . 13 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (π‘€β€˜(π‘₯ Β· 𝑣)))
46 eqidd 2734 . . . . . . . . . . . . . . . . 17 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ((LCDualβ€˜πΎ)β€˜π‘Š) = ((LCDualβ€˜πΎ)β€˜π‘Š))
47 hgmapfval.c . . . . . . . . . . . . . . . . 17 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
4846, 47eqtr4di 2791 . . . . . . . . . . . . . . . 16 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ((LCDualβ€˜πΎ)β€˜π‘Š) = 𝐢)
4948fveq2d 6896 . . . . . . . . . . . . . . 15 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š)) = ( ·𝑠 β€˜πΆ))
50 hgmapfval.s . . . . . . . . . . . . . . 15 βˆ™ = ( ·𝑠 β€˜πΆ)
5149, 50eqtr4di 2791 . . . . . . . . . . . . . 14 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š)) = βˆ™ )
52 eqidd 2734 . . . . . . . . . . . . . 14 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ 𝑦 = 𝑦)
5340fveq1d 6894 . . . . . . . . . . . . . 14 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (π‘šβ€˜π‘£) = (π‘€β€˜π‘£))
5451, 52, 53oveq123d 7430 . . . . . . . . . . . . 13 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))
5545, 54eqeq12d 2749 . . . . . . . . . . . 12 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ ((π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)) ↔ (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£))))
5639, 55raleqbidv 3343 . . . . . . . . . . 11 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)) ↔ βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£))))
5735, 56riotaeqbidv 7368 . . . . . . . . . 10 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£))) = (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£))))
5835, 57mpteq12dv 5240 . . . . . . . . 9 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)))) = (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
5958eleq2d 2820 . . . . . . . 8 ((𝑒 = π‘ˆ ∧ 𝑏 = 𝐡 ∧ π‘š = 𝑀) β†’ (π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)))) ↔ π‘Ž ∈ (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£))))))
6034, 59syld3an2 1412 . . . . . . 7 ((𝑒 = π‘ˆ ∧ 𝑏 = (Baseβ€˜(Scalarβ€˜π‘’)) ∧ π‘š = 𝑀) β†’ (π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)))) ↔ π‘Ž ∈ (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£))))))
6123, 24, 25, 60sbc3ie 3864 . . . . . 6 ([π‘ˆ / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][𝑀 / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘Š))(π‘šβ€˜π‘£)))) ↔ π‘Ž ∈ (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
6222, 61bitrdi 287 . . . . 5 (𝑀 = π‘Š β†’ ([((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£)))) ↔ π‘Ž ∈ (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£))))))
6362eqabcdv 2869 . . . 4 (𝑀 = π‘Š β†’ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))} = (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
64 eqid 2733 . . . 4 (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))}) = (𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))})
6563, 64, 33mptfvmpt 7230 . . 3 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ {π‘Ž ∣ [((DVecHβ€˜πΎ)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜πΎ)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜πΎ)β€˜π‘€))(π‘šβ€˜π‘£))))})β€˜π‘Š) = (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
666, 65sylan9eq 2793 . 2 ((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
671, 66syl 17 1 (πœ‘ β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ (℩𝑦 ∈ 𝐡 βˆ€π‘£ ∈ 𝑉 (π‘€β€˜(π‘₯ Β· 𝑣)) = (𝑦 βˆ™ (π‘€β€˜π‘£)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  [wsbc 3778   ↦ cmpt 5232  β€˜cfv 6544  β„©crio 7364  (class class class)co 7409  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201  LHypclh 38855  DVecHcdvh 39949  LCDualclcd 40457  HDMapchdma 40663  HGMapchg 40754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-hgmap 40755
This theorem is referenced by:  hgmapval  40758  hgmapfnN  40759
  Copyright terms: Public domain W3C validator