Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfval Structured version   Visualization version   GIF version

Theorem hgmapfval 41869
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
Assertion
Ref Expression
hgmapfval (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Distinct variable groups:   𝑥,𝑣,𝑦,𝐾   𝑣,𝐵,𝑥,𝑦   𝑣,𝑀,𝑥,𝑦   𝑣,𝑈,𝑥,𝑦   𝑣,𝑉   𝑣,𝑊,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑥,𝑦,𝑣)   𝑅(𝑥,𝑦,𝑣)   (𝑥,𝑦,𝑣)   · (𝑥,𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣)   𝐼(𝑥,𝑦,𝑣)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑣)

Proof of Theorem hgmapfval
Dummy variables 𝑤 𝑎 𝑏 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapfval.k . 2 (𝜑 → (𝐾𝑌𝑊𝐻))
2 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
3 hgmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hgmapffval 41868 . . . . 5 (𝐾𝑌 → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
54fveq1d 6909 . . . 4 (𝐾𝑌 → ((HGMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
62, 5eqtrid 2787 . . 3 (𝐾𝑌𝐼 = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
7 fveq2 6907 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 hgmapfval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8eqtr4di 2793 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
10 fveq2 6907 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = ((HDMap‘𝐾)‘𝑊))
11 hgmapfval.m . . . . . . . . . 10 𝑀 = ((HDMap‘𝐾)‘𝑊)
1210, 11eqtr4di 2793 . . . . . . . . 9 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = 𝑀)
13 2fveq3 6912 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑤)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)))
1413oveqd 7448 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))
1514eqeq2d 2746 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1615ralbidv 3176 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1716riotabidv 7390 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))) = (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1817mpteq2dv 5250 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) = (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))))
1918eleq2d 2825 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2012, 19sbceqbid 3798 . . . . . . . 8 (𝑤 = 𝑊 → ([((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2120sbcbidv 3851 . . . . . . 7 (𝑤 = 𝑊 → ([(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
229, 21sbceqbid 3798 . . . . . 6 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
238fvexi 6921 . . . . . . 7 𝑈 ∈ V
24 fvex 6920 . . . . . . 7 (Base‘(Scalar‘𝑢)) ∈ V
2511fvexi 6921 . . . . . . 7 𝑀 ∈ V
26 simp2 1136 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘(Scalar‘𝑢)))
27 simp1 1135 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑢 = 𝑈)
2827fveq2d 6911 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = (Scalar‘𝑈))
29 hgmapfval.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑈)
3028, 29eqtr4di 2793 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = 𝑅)
3130fveq2d 6911 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Base‘(Scalar‘𝑢)) = (Base‘𝑅))
3226, 31eqtrd 2775 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘𝑅))
33 hgmapfval.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3432, 33eqtr4di 2793 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = 𝐵)
35 simp2 1136 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑏 = 𝐵)
36 simp1 1135 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑢 = 𝑈)
3736fveq2d 6911 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = (Base‘𝑈))
38 hgmapfval.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
3937, 38eqtr4di 2793 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = 𝑉)
40 simp3 1137 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑚 = 𝑀)
4136fveq2d 6911 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = ( ·𝑠𝑈))
42 hgmapfval.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑈)
4341, 42eqtr4di 2793 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = · )
4443oveqd 7448 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥( ·𝑠𝑢)𝑣) = (𝑥 · 𝑣))
4540, 44fveq12d 6914 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑀‘(𝑥 · 𝑣)))
46 eqidd 2736 . . . . . . . . . . . . . . . . 17 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊))
47 hgmapfval.c . . . . . . . . . . . . . . . . 17 𝐶 = ((LCDual‘𝐾)‘𝑊)
4846, 47eqtr4di 2793 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = 𝐶)
4948fveq2d 6911 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠𝐶))
50 hgmapfval.s . . . . . . . . . . . . . . 15 = ( ·𝑠𝐶)
5149, 50eqtr4di 2793 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = )
52 eqidd 2736 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑦 = 𝑦)
5340fveq1d 6909 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚𝑣) = (𝑀𝑣))
5451, 52, 53oveq123d 7452 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) = (𝑦 (𝑀𝑣)))
5545, 54eqeq12d 2751 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5639, 55raleqbidv 3344 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5735, 56riotaeqbidv 7391 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5835, 57mpteq12dv 5239 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
5958eleq2d 2825 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6034, 59syld3an2 1410 . . . . . . 7 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6123, 24, 25, 60sbc3ie 3877 . . . . . 6 ([𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
6222, 61bitrdi 287 . . . . 5 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6362eqabcdv 2874 . . . 4 (𝑤 = 𝑊 → {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))} = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
64 eqid 2735 . . . 4 (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})
6563, 64, 33mptfvmpt 7248 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
666, 65sylan9eq 2795 . 2 ((𝐾𝑌𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
671, 66syl 17 1 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wral 3059  [wsbc 3791  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  HDMapchdma 41775  HGMapchg 41866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-hgmap 41867
This theorem is referenced by:  hgmapval  41870  hgmapfnN  41871
  Copyright terms: Public domain W3C validator