Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfval Structured version   Visualization version   GIF version

Theorem hgmapfval 39024
Description: Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
Assertion
Ref Expression
hgmapfval (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Distinct variable groups:   𝑥,𝑣,𝑦,𝐾   𝑣,𝐵,𝑥,𝑦   𝑣,𝑀,𝑥,𝑦   𝑣,𝑈,𝑥,𝑦   𝑣,𝑉   𝑣,𝑊,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑥,𝑦,𝑣)   𝑅(𝑥,𝑦,𝑣)   (𝑥,𝑦,𝑣)   · (𝑥,𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣)   𝐼(𝑥,𝑦,𝑣)   𝑉(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑣)

Proof of Theorem hgmapfval
Dummy variables 𝑤 𝑎 𝑏 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapfval.k . 2 (𝜑 → (𝐾𝑌𝑊𝐻))
2 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
3 hgmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hgmapffval 39023 . . . . 5 (𝐾𝑌 → (HGMap‘𝐾) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}))
54fveq1d 6674 . . . 4 (𝐾𝑌 → ((HGMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
62, 5syl5eq 2870 . . 3 (𝐾𝑌𝐼 = ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊))
7 fveq2 6672 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 hgmapfval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8syl6eqr 2876 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
10 fveq2 6672 . . . . . . . . . 10 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = ((HDMap‘𝐾)‘𝑊))
11 hgmapfval.m . . . . . . . . . 10 𝑀 = ((HDMap‘𝐾)‘𝑊)
1210, 11syl6eqr 2876 . . . . . . . . 9 (𝑤 = 𝑊 → ((HDMap‘𝐾)‘𝑤) = 𝑀)
13 2fveq3 6677 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑤)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)))
1413oveqd 7175 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))
1514eqeq2d 2834 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1615ralbidv 3199 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1716riotabidv 7118 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))) = (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))
1817mpteq2dv 5164 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) = (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))))
1918eleq2d 2900 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2012, 19sbceqbid 3781 . . . . . . . 8 (𝑤 = 𝑊 → ([((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
2120sbcbidv 3829 . . . . . . 7 (𝑤 = 𝑊 → ([(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
229, 21sbceqbid 3781 . . . . . 6 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ [𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))))))
238fvexi 6686 . . . . . . 7 𝑈 ∈ V
24 fvex 6685 . . . . . . 7 (Base‘(Scalar‘𝑢)) ∈ V
2511fvexi 6686 . . . . . . 7 𝑀 ∈ V
26 simp2 1133 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘(Scalar‘𝑢)))
27 simp1 1132 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑢 = 𝑈)
2827fveq2d 6676 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = (Scalar‘𝑈))
29 hgmapfval.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑈)
3028, 29syl6eqr 2876 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Scalar‘𝑢) = 𝑅)
3130fveq2d 6676 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (Base‘(Scalar‘𝑢)) = (Base‘𝑅))
3226, 31eqtrd 2858 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = (Base‘𝑅))
33 hgmapfval.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3432, 33syl6eqr 2876 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → 𝑏 = 𝐵)
35 simp2 1133 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑏 = 𝐵)
36 simp1 1132 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑢 = 𝑈)
3736fveq2d 6676 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = (Base‘𝑈))
38 hgmapfval.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
3937, 38syl6eqr 2876 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (Base‘𝑢) = 𝑉)
40 simp3 1134 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑚 = 𝑀)
4136fveq2d 6676 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = ( ·𝑠𝑈))
42 hgmapfval.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑈)
4341, 42syl6eqr 2876 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠𝑢) = · )
4443oveqd 7175 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥( ·𝑠𝑢)𝑣) = (𝑥 · 𝑣))
4540, 44fveq12d 6679 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑀‘(𝑥 · 𝑣)))
46 eqidd 2824 . . . . . . . . . . . . . . . . 17 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊))
47 hgmapfval.c . . . . . . . . . . . . . . . . 17 𝐶 = ((LCDual‘𝐾)‘𝑊)
4846, 47syl6eqr 2876 . . . . . . . . . . . . . . . 16 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((LCDual‘𝐾)‘𝑊) = 𝐶)
4948fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠𝐶))
50 hgmapfval.s . . . . . . . . . . . . . . 15 = ( ·𝑠𝐶)
5149, 50syl6eqr 2876 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = )
52 eqidd 2824 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → 𝑦 = 𝑦)
5340fveq1d 6674 . . . . . . . . . . . . . 14 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑚𝑣) = (𝑀𝑣))
5451, 52, 53oveq123d 7179 . . . . . . . . . . . . 13 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) = (𝑦 (𝑀𝑣)))
5545, 54eqeq12d 2839 . . . . . . . . . . . 12 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → ((𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5639, 55raleqbidv 3403 . . . . . . . . . . 11 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5735, 56riotaeqbidv 7119 . . . . . . . . . 10 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
5835, 57mpteq12dv 5153 . . . . . . . . 9 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
5958eleq2d 2900 . . . . . . . 8 ((𝑢 = 𝑈𝑏 = 𝐵𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6034, 59syld3an2 1407 . . . . . . 7 ((𝑢 = 𝑈𝑏 = (Base‘(Scalar‘𝑢)) ∧ 𝑚 = 𝑀) → (𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6123, 24, 25, 60sbc3ie 3854 . . . . . 6 ([𝑈 / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][𝑀 / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
6222, 61syl6bb 289 . . . . 5 (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣)))) ↔ 𝑎 ∈ (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))))
6362abbi1dv 2954 . . . 4 (𝑤 = 𝑊 → {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))} = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
64 eqid 2823 . . . 4 (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))}) = (𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})
6563, 64, 33mptfvmpt 6992 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑎[((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚𝑣))))})‘𝑊) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
666, 65sylan9eq 2878 . 2 ((𝐾𝑌𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
671, 66syl 17 1 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wral 3140  [wsbc 3774  cmpt 5148  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  LHypclh 37122  DVecHcdvh 38216  LCDualclcd 38724  HDMapchdma 38930  HGMapchg 39021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-hgmap 39022
This theorem is referenced by:  hgmapval  39025  hgmapfnN  39026
  Copyright terms: Public domain W3C validator