Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmydioph Structured version   Visualization version   GIF version

Theorem rmydioph 42672
Description: jm2.27 42666 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
rmydioph {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmydioph
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8878 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
2 2nn 12337 . . . . . . . . 9 2 ∈ ℕ
32jm2.27dlem3 42669 . . . . . . . 8 2 ∈ (1...2)
4 df-3 12328 . . . . . . . 8 3 = (2 + 1)
53, 4, 2jm2.27dlem2 42668 . . . . . . 7 2 ∈ (1...3)
6 ffvelcdm 7095 . . . . . . 7 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
71, 5, 6sylancl 584 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘2) ∈ ℕ0)
8 elnn0 12526 . . . . . 6 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
97, 8sylib 217 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
10 iba 526 . . . . . . 7 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))))
11 andi 1005 . . . . . . 7 (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0)) ↔ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))
1210, 11bitrdi 286 . . . . . 6 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0))))
1312anbi2d 628 . . . . 5 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))))
149, 13syl 17 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))))
15 simplr 767 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ (ℤ‘2))
16 nnz 12631 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
1716adantl 480 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘2) ∈ ℤ)
18 frmy 42572 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1918fovcl 7554 . . . . . . . . . . . . 13 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℤ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ)
2015, 17, 19syl2anc 582 . . . . . . . . . . . 12 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ)
21 rmy0 42587 . . . . . . . . . . . . . 14 ((𝑎‘1) ∈ (ℤ‘2) → ((𝑎‘1) Yrm 0) = 0)
2221ad2antlr 725 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm 0) = 0)
23 nngt0 12295 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → 0 < (𝑎‘2))
2423adantl 480 . . . . . . . . . . . . . 14 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 < (𝑎‘2))
25 0zd 12622 . . . . . . . . . . . . . . 15 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 ∈ ℤ)
26 ltrmy 42610 . . . . . . . . . . . . . . 15 (((𝑎‘1) ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (𝑎‘2) ∈ ℤ) → (0 < (𝑎‘2) ↔ ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2))))
2715, 25, 17, 26syl3anc 1368 . . . . . . . . . . . . . 14 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (0 < (𝑎‘2) ↔ ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2))))
2824, 27mpbid 231 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2)))
2922, 28eqbrtrrd 5177 . . . . . . . . . . . 12 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 < ((𝑎‘1) Yrm (𝑎‘2)))
30 elnnz 12620 . . . . . . . . . . . 12 (((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ ↔ (((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ ∧ 0 < ((𝑎‘1) Yrm (𝑎‘2))))
3120, 29, 30sylanbrc 581 . . . . . . . . . . 11 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ)
32 eleq1 2814 . . . . . . . . . . 11 ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) → ((𝑎‘3) ∈ ℕ ↔ ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ))
3331, 32syl5ibrcom 246 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) → (𝑎‘3) ∈ ℕ))
3433pm4.71rd 561 . . . . . . . . 9 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))))
35 simpllr 774 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘1) ∈ (ℤ‘2))
36 simplr 767 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘2) ∈ ℕ)
37 simpr 483 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘3) ∈ ℕ)
38 jm2.27 42666 . . . . . . . . . . 11 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
3935, 36, 37, 38syl3anc 1368 . . . . . . . . . 10 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
4039pm5.32da 577 . . . . . . . . 9 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘3) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))))
4134, 40bitrd 278 . . . . . . . 8 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))))
4241ex 411 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘2) ∈ ℕ → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))))
4342pm5.32rd 576 . . . . . 6 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)))
44 oveq2 7432 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑎‘1) Yrm 0))
4544adantl 480 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑎‘1) Yrm 0))
4621ad2antlr 725 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm 0) = 0)
4745, 46eqtrd 2766 . . . . . . . . 9 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm (𝑎‘2)) = 0)
4847eqeq2d 2737 . . . . . . . 8 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑎‘3) = 0))
4948ex 411 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑎‘3) = 0)))
5049pm5.32rd 576 . . . . . 6 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0) ↔ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))
5143, 50orbi12d 916 . . . . 5 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)) ↔ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))))
5251pm5.32da 577 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))))
5314, 52bitrd 278 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))))
5453rabbiia 3423 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))}
55 3nn0 12542 . . . 4 3 ∈ ℕ0
56 2z 12646 . . . 4 2 ∈ ℤ
57 ovex 7457 . . . . 5 (1...3) ∈ V
58 1nn 12275 . . . . . . . 8 1 ∈ ℕ
5958jm2.27dlem3 42669 . . . . . . 7 1 ∈ (1...1)
60 df-2 12327 . . . . . . 7 2 = (1 + 1)
6159, 60, 58jm2.27dlem2 42668 . . . . . 6 1 ∈ (1...2)
6261, 4, 2jm2.27dlem2 42668 . . . . 5 1 ∈ (1...3)
63 mzpproj 42394 . . . . 5 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
6457, 62, 63mp2an 690 . . . 4 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
65 eluzrabdioph 42463 . . . 4 ((3 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3))
6655, 56, 64, 65mp3an 1458 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3)
67 3nn 12343 . . . . . . . . 9 3 ∈ ℕ
6867jm2.27dlem3 42669 . . . . . . . 8 3 ∈ (1...3)
69 mzpproj 42394 . . . . . . . 8 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
7057, 68, 69mp2an 690 . . . . . . 7 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
71 elnnrabdioph 42464 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3))
7255, 70, 71mp2an 690 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3)
73 fvex 6914 . . . . . . . . . . . . . . . 16 (𝑖‘8) ∈ V
74 fvex 6914 . . . . . . . . . . . . . . . 16 (𝑖‘9) ∈ V
75 fvex 6914 . . . . . . . . . . . . . . . 16 (𝑖10) ∈ V
76 oveq1 7431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑖‘9) → (𝑔↑2) = ((𝑖‘9)↑2))
77 oveq1 7431 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑖‘8) → (𝑓↑2) = ((𝑖‘8)↑2))
7877oveq2d 7440 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑖‘8) → (((𝑒↑2) − 1) · (𝑓↑2)) = (((𝑒↑2) − 1) · ((𝑖‘8)↑2)))
7976, 78oveqan12rd 7444 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9)) → ((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))))
8079eqeq1d 2728 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9)) → (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ↔ (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1))
81803adant3 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ↔ (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1))
82 oveq1 7431 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑖10) → ( + 1) = ((𝑖10) + 1))
8382oveq1d 7439 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑖10) → (( + 1) · (2 · ((𝑎‘3)↑2))) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))))
8483eqeq2d 2737 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑖10) → (𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ↔ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
85843ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ↔ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
8681, 853anbi12d 1434 . . . . . . . . . . . . . . . . . 18 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))))
8786anbi2d 628 . . . . . . . . . . . . . . . . 17 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ↔ ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))))))
88 oveq1 7431 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑖‘8) → (𝑓 − (𝑎‘3)) = ((𝑖‘8) − (𝑎‘3)))
8988breq2d 5165 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑖‘8) → (𝑑 ∥ (𝑓 − (𝑎‘3)) ↔ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))))
9089anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑖‘8) → (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ↔ ((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3)))))
91 oveq1 7431 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑖‘8) → (𝑓 − (𝑎‘2)) = ((𝑖‘8) − (𝑎‘2)))
9291breq2d 5165 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑖‘8) → ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ↔ (2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2))))
9392anbi1d 629 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑖‘8) → (((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)) ↔ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))
9490, 93anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑖‘8) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
95943ad2ant1 1130 . . . . . . . . . . . . . . . . 17 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9687, 95anbi12d 630 . . . . . . . . . . . . . . . 16 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
9773, 74, 75, 96sbc3ie 3862 . . . . . . . . . . . . . . 15 ([(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9897sbcbii 3837 . . . . . . . . . . . . . 14 ([(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9998sbcbii 3837 . . . . . . . . . . . . 13 ([(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
10099sbcbii 3837 . . . . . . . . . . . 12 ([(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
101100sbcbii 3837 . . . . . . . . . . 11 ([(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
102101sbcbii 3837 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
103 fvex 6914 . . . . . . . . . . . . 13 (𝑖‘5) ∈ V
104 fvex 6914 . . . . . . . . . . . . 13 (𝑖‘6) ∈ V
105 fvex 6914 . . . . . . . . . . . . 13 (𝑖‘7) ∈ V
106 oveq1 7431 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑖‘6) → (𝑑↑2) = ((𝑖‘6)↑2))
1071063ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑑↑2) = ((𝑖‘6)↑2))
108 oveq1 7431 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑖‘5) → (𝑐↑2) = ((𝑖‘5)↑2))
109108oveq2d 7440 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑖‘5) → ((((𝑎‘1)↑2) − 1) · (𝑐↑2)) = ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)))
1101093ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑎‘1)↑2) − 1) · (𝑐↑2)) = ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)))
111107, 110oveq12d 7442 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))))
112111eqeq1d 2728 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
113 eleq1 2814 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → (𝑒 ∈ (ℤ‘2) ↔ (𝑖‘7) ∈ (ℤ‘2)))
1141133ad2ant3 1132 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑒 ∈ (ℤ‘2) ↔ (𝑖‘7) ∈ (ℤ‘2)))
115112, 1143anbi23d 1436 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ↔ (((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))))
116 oveq1 7431 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = (𝑖‘7) → (𝑒↑2) = ((𝑖‘7)↑2))
117116oveq1d 7439 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑖‘7) → ((𝑒↑2) − 1) = (((𝑖‘7)↑2) − 1))
118117oveq1d 7439 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑖‘7) → (((𝑒↑2) − 1) · ((𝑖‘8)↑2)) = ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))
119118oveq2d 7440 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))))
120119eqeq1d 2728 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ↔ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1))
1211203ad2ant3 1132 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ↔ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1))
122 eqeq1 2730 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑖‘5) → (𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
1231223ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
124 simp2 1134 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → 𝑑 = (𝑖‘6))
125 oveq1 7431 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (𝑒 − (𝑎‘1)) = ((𝑖‘7) − (𝑎‘1)))
1261253ad2ant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑒 − (𝑎‘1)) = ((𝑖‘7) − (𝑎‘1)))
127124, 126breq12d 5166 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑑 ∥ (𝑒 − (𝑎‘1)) ↔ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))))
128121, 123, 1273anbi123d 1433 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))))
129115, 128anbi12d 630 . . . . . . . . . . . . . 14 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ↔ ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))))))
130 oveq1 7431 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (𝑒 − 1) = ((𝑖‘7) − 1))
131130breq2d 5165 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → ((2 · (𝑎‘3)) ∥ (𝑒 − 1) ↔ (2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1)))
132 breq1 5156 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑖‘6) → (𝑑 ∥ ((𝑖‘8) − (𝑎‘3)) ↔ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))))
133131, 132bi2anan9r 637 . . . . . . . . . . . . . . . 16 ((𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ↔ ((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3)))))
134133anbi1d 629 . . . . . . . . . . . . . . 15 ((𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
1351343adant1 1127 . . . . . . . . . . . . . 14 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
136129, 135anbi12d 630 . . . . . . . . . . . . 13 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
137103, 104, 105, 136sbc3ie 3862 . . . . . . . . . . . 12 ([(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
138137sbcbii 3837 . . . . . . . . . . 11 ([(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
139138sbcbii 3837 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
140 vex 3466 . . . . . . . . . . . 12 𝑖 ∈ V
141140resex 6038 . . . . . . . . . . 11 (𝑖 ↾ (1...3)) ∈ V
142 fvex 6914 . . . . . . . . . . 11 (𝑖‘4) ∈ V
143 oveq1 7431 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑖‘4) → (𝑏↑2) = ((𝑖‘4)↑2))
14462jm2.27dlem1 42667 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘1) = (𝑖‘1))
145144oveq1d 7439 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑖‘1)↑2))
146145oveq1d 7439 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑖‘1)↑2) − 1))
14768jm2.27dlem1 42667 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘3) = (𝑖‘3))
148147oveq1d 7439 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑖‘3)↑2))
149146, 148oveq12d 7442 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2)) = ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))
150143, 149oveqan12rd 7444 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))))
151150eqeq1d 2728 . . . . . . . . . . . . . 14 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ↔ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1))
152146oveq1d 7439 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)) = ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))
153152oveq2d 7440 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))))
154153eqeq1d 2728 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
155154adantr 479 . . . . . . . . . . . . . 14 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
156151, 1553anbi12d 1434 . . . . . . . . . . . . 13 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ↔ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))))
157148oveq2d 7440 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (2 · ((𝑎‘3)↑2)) = (2 · ((𝑖‘3)↑2)))
158157oveq2d 7440 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))))
159158eqeq2d 2737 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))))
160144oveq2d 7440 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘7) − (𝑎‘1)) = ((𝑖‘7) − (𝑖‘1)))
161160breq2d 5165 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)) ↔ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))
162159, 1613anbi23d 1436 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))))
163162adantr 479 . . . . . . . . . . . . 13 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))))
164156, 163anbi12d 630 . . . . . . . . . . . 12 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ↔ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))))
165147oveq2d 7440 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (2 · (𝑎‘3)) = (2 · (𝑖‘3)))
166165breq1d 5163 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ↔ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)))
167147oveq2d 7440 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘8) − (𝑎‘3)) = ((𝑖‘8) − (𝑖‘3)))
168167breq2d 5165 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3)) ↔ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))))
169166, 168anbi12d 630 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ↔ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))))
1705jm2.27dlem1 42667 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘2) = (𝑖‘2))
171170oveq2d 7440 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘8) − (𝑎‘2)) = ((𝑖‘8) − (𝑖‘2)))
172165, 171breq12d 5166 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ↔ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))))
173170, 147breq12d 5166 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘2) ≤ (𝑎‘3) ↔ (𝑖‘2) ≤ (𝑖‘3)))
174172, 173anbi12d 630 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)) ↔ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))
175169, 174anbi12d 630 . . . . . . . . . . . . 13 (𝑎 = (𝑖 ↾ (1...3)) → ((((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
176175adantr 479 . . . . . . . . . . . 12 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
177164, 176anbi12d 630 . . . . . . . . . . 11 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))))
178141, 142, 177sbc2ie 3859 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
179102, 139, 1783bitri 296 . . . . . . . . 9 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
180179rabbii 3425 . . . . . . . 8 {𝑖 ∈ (ℕ0m (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} = {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))}
181 10nn0 12747 . . . . . . . . . . . 12 10 ∈ ℕ0
182 ovex 7457 . . . . . . . . . . . . . . 15 (1...10) ∈ V
183 df-5 12330 . . . . . . . . . . . . . . . . 17 5 = (4 + 1)
184 df-6 12331 . . . . . . . . . . . . . . . . . 18 6 = (5 + 1)
185 df-7 12332 . . . . . . . . . . . . . . . . . . 19 7 = (6 + 1)
186 df-8 12333 . . . . . . . . . . . . . . . . . . . 20 8 = (7 + 1)
187 df-9 12334 . . . . . . . . . . . . . . . . . . . . 21 9 = (8 + 1)
188 9p1e10 12731 . . . . . . . . . . . . . . . . . . . . . . 23 (9 + 1) = 10
189188eqcomi 2735 . . . . . . . . . . . . . . . . . . . . . 22 10 = (9 + 1)
190 ssid 4002 . . . . . . . . . . . . . . . . . . . . . 22 (1...10) ⊆ (1...10)
191189, 190jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . . . . 21 (1...9) ⊆ (1...10)
192187, 191jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . . . 20 (1...8) ⊆ (1...10)
193186, 192jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . . 19 (1...7) ⊆ (1...10)
194185, 193jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . 18 (1...6) ⊆ (1...10)
195184, 194jm2.27dlem5 42671 . . . . . . . . . . . . . . . . 17 (1...5) ⊆ (1...10)
196183, 195jm2.27dlem5 42671 . . . . . . . . . . . . . . . 16 (1...4) ⊆ (1...10)
197 4nn 12347 . . . . . . . . . . . . . . . . 17 4 ∈ ℕ
198197jm2.27dlem3 42669 . . . . . . . . . . . . . . . 16 4 ∈ (1...4)
199196, 198sselii 3976 . . . . . . . . . . . . . . 15 4 ∈ (1...10)
200 mzpproj 42394 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 4 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10)))
201182, 199, 200mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10))
202 2nn0 12541 . . . . . . . . . . . . . 14 2 ∈ ℕ0
203 mzpexpmpt 42402 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10)))
204201, 202, 203mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10))
205 df-4 12329 . . . . . . . . . . . . . . . . . . . . 21 4 = (3 + 1)
206205, 196jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . . . 20 (1...3) ⊆ (1...10)
2074, 206jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . . 19 (1...2) ⊆ (1...10)
20860, 207jm2.27dlem5 42671 . . . . . . . . . . . . . . . . . 18 (1...1) ⊆ (1...10)
209208, 59sselii 3976 . . . . . . . . . . . . . . . . 17 1 ∈ (1...10)
210 mzpproj 42394 . . . . . . . . . . . . . . . . 17 (((1...10) ∈ V ∧ 1 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10)))
211182, 209, 210mp2an 690 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10))
212 mzpexpmpt 42402 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10)))
213211, 202, 212mp2an 690 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10))
214 1z 12644 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
215 mzpconstmpt 42397 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 1 ∈ ℤ) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10)))
216182, 214, 215mp2an 690 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))
217 mzpsubmpt 42400 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)))
218213, 216, 217mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10))
219206, 68sselii 3976 . . . . . . . . . . . . . . . 16 3 ∈ (1...10)
220 mzpproj 42394 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 3 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10)))
221182, 219, 220mp2an 690 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))
222 mzpexpmpt 42402 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10)))
223221, 202, 222mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))
224 mzpmulmpt 42399 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10)))
225218, 223, 224mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))
226 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)))
227204, 225, 226mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))
228 eqrabdioph 42434 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10))
229181, 227, 216, 228mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10)
230 6nn 12353 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
231230jm2.27dlem3 42669 . . . . . . . . . . . . . . . 16 6 ∈ (1...6)
232194, 231sselii 3976 . . . . . . . . . . . . . . 15 6 ∈ (1...10)
233 mzpproj 42394 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 6 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)))
234182, 232, 233mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10))
235 mzpexpmpt 42402 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10)))
236234, 202, 235mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10))
237 5nn 12350 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ
238237jm2.27dlem3 42669 . . . . . . . . . . . . . . . . 17 5 ∈ (1...5)
239195, 238sselii 3976 . . . . . . . . . . . . . . . 16 5 ∈ (1...10)
240 mzpproj 42394 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 5 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)))
241182, 239, 240mp2an 690 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10))
242 mzpexpmpt 42402 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10)))
243241, 202, 242mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10))
244 mzpmulmpt 42399 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10)))
245218, 243, 244mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10))
246 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10)))
247236, 245, 246mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10))
248 eqrabdioph 42434 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10))
249181, 247, 216, 248mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10)
250 7nn 12356 . . . . . . . . . . . . . . 15 7 ∈ ℕ
251250jm2.27dlem3 42669 . . . . . . . . . . . . . 14 7 ∈ (1...7)
252193, 251sselii 3976 . . . . . . . . . . . . 13 7 ∈ (1...10)
253 mzpproj 42394 . . . . . . . . . . . . 13 (((1...10) ∈ V ∧ 7 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)))
254182, 252, 253mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10))
255 eluzrabdioph 42463 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10))
256181, 56, 254, 255mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10)
257 3anrabdioph 42439 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10))
258229, 249, 256, 257mp3an 1458 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10)
259 9nn 12362 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
260259jm2.27dlem3 42669 . . . . . . . . . . . . . . . 16 9 ∈ (1...9)
261260, 189, 259jm2.27dlem2 42668 . . . . . . . . . . . . . . 15 9 ∈ (1...10)
262 mzpproj 42394 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 9 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10)))
263182, 261, 262mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10))
264 mzpexpmpt 42402 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10)))
265263, 202, 264mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10))
266 mzpexpmpt 42402 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10)))
267254, 202, 266mp2an 690 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10))
268 mzpsubmpt 42400 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10)))
269267, 216, 268mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10))
270 8nn 12359 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
271270jm2.27dlem3 42669 . . . . . . . . . . . . . . . . 17 8 ∈ (1...8)
272192, 271sselii 3976 . . . . . . . . . . . . . . . 16 8 ∈ (1...10)
273 mzpproj 42394 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 8 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)))
274182, 272, 273mp2an 690 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10))
275 mzpexpmpt 42402 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10)))
276274, 202, 275mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10))
277 mzpmulmpt 42399 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10)))
278269, 276, 277mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10))
279 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10)))
280265, 278, 279mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10))
281 eqrabdioph 42434 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10))
282181, 280, 216, 281mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10)
283 10nn 12745 . . . . . . . . . . . . . . . 16 10 ∈ ℕ
284283jm2.27dlem3 42669 . . . . . . . . . . . . . . 15 10 ∈ (1...10)
285 mzpproj 42394 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 10 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10)))
286182, 284, 285mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10))
287 mzpaddmpt 42398 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10)))
288286, 216, 287mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10))
289 mzpconstmpt 42397 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 2 ∈ ℤ) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)))
290182, 56, 289mp2an 690 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10))
291 mzpmulmpt 42399 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10)))
292290, 223, 291mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))
293 mzpmulmpt 42399 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)))
294288, 292, 293mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))
295 eqrabdioph 42434 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10))
296181, 241, 294, 295mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10)
297 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10)))
298254, 211, 297mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10))
299 dvdsrabdioph 42467 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10))
300181, 234, 298, 299mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10)
301 3anrabdioph 42439 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10))
302282, 296, 300, 301mp3an 1458 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10)
303 anrabdioph 42437 . . . . . . . . . 10 (({𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10))
304258, 302, 303mp2an 690 . . . . . . . . 9 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10)
305 mzpmulmpt 42399 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)))
306290, 221, 305mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10))
307 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10)))
308254, 216, 307mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10))
309 dvdsrabdioph 42467 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10))
310181, 306, 308, 309mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10)
311 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10)))
312274, 221, 311mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10))
313 dvdsrabdioph 42467 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10))
314181, 234, 312, 313mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10)
315 anrabdioph 42437 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10))
316310, 314, 315mp2an 690 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10)
317207, 3sselii 3976 . . . . . . . . . . . . . 14 2 ∈ (1...10)
318 mzpproj 42394 . . . . . . . . . . . . . 14 (((1...10) ∈ V ∧ 2 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10)))
319182, 317, 318mp2an 690 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10))
320 mzpsubmpt 42400 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10)))
321274, 319, 320mp2an 690 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10))
322 dvdsrabdioph 42467 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10))
323181, 306, 321, 322mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10)
324 lerabdioph 42462 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10))
325181, 319, 221, 324mp3an 1458 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10)
326 anrabdioph 42437 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10))
327323, 325, 326mp2an 690 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10)
328 anrabdioph 42437 . . . . . . . . . 10 (({𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10))
329316, 327, 328mp2an 690 . . . . . . . . 9 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10)
330 anrabdioph 42437 . . . . . . . . 9 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))} ∈ (Dioph‘10))
331304, 329, 330mp2an 690 . . . . . . . 8 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))} ∈ (Dioph‘10)
332180, 331eqeltri 2822 . . . . . . 7 {𝑖 ∈ (ℕ0m (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘10)
333205, 183, 184, 185, 186, 187, 1897rexfrabdioph 42457 . . . . . . 7 ((3 ∈ ℕ0 ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘10)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3))
33455, 332, 333mp2an 690 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3)
335 anrabdioph 42437 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3))
33672, 334, 335mp2an 690 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3)
337 mzpproj 42394 . . . . . . 7 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
33857, 5, 337mp2an 690 . . . . . 6 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
339 elnnrabdioph 42464 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
34055, 338, 339mp2an 690 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
341 anrabdioph 42437 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3))
342336, 340, 341mp2an 690 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3)
343 eq0rabdioph 42433 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
34455, 70, 343mp2an 690 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
345 eq0rabdioph 42433 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
34655, 338, 345mp2an 690 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
347 anrabdioph 42437 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3))
348344, 346, 347mp2an 690 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3)
349 orrabdioph 42438 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3))
350342, 348, 349mp2an 690 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3)
351 anrabdioph 42437 . . 3 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))} ∈ (Dioph‘3))
35266, 350, 351mp2an 690 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))} ∈ (Dioph‘3)
35354, 352eqeltri 2822 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  {crab 3419  Vcvv 3462  [wsbc 3776   class class class wbr 5153  cmpt 5236  cres 5684  wf 6550  cfv 6554  (class class class)co 7424  m cmap 8855  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cmin 11494  cn 12264  2c2 12319  3c3 12320  4c4 12321  5c5 12322  6c6 12323  7c7 12324  8c8 12325  9c9 12326  0cn0 12524  cz 12610  cdc 12729  cuz 12874  ...cfz 13538  cexp 14081  cdvds 16256  mzPolycmzp 42379  Diophcdioph 42412   Yrm crmy 42558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-sin 16071  df-cos 16072  df-pi 16074  df-dvds 16257  df-gcd 16495  df-prm 16673  df-numer 16737  df-denom 16738  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-mzpcl 42380  df-mzp 42381  df-dioph 42413  df-squarenn 42498  df-pell1qr 42499  df-pell14qr 42500  df-pell1234qr 42501  df-pellfund 42502  df-rmx 42559  df-rmy 42560
This theorem is referenced by:  rmxdioph  42674  expdiophlem2  42680
  Copyright terms: Public domain W3C validator