Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmydioph Structured version   Visualization version   GIF version

Theorem rmydioph 42971
Description: jm2.27 42965 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
rmydioph {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmydioph
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8907 . . . . . . 7 (𝑎 ∈ (ℕ0m (1...3)) → 𝑎:(1...3)⟶ℕ0)
2 2nn 12366 . . . . . . . . 9 2 ∈ ℕ
32jm2.27dlem3 42968 . . . . . . . 8 2 ∈ (1...2)
4 df-3 12357 . . . . . . . 8 3 = (2 + 1)
53, 4, 2jm2.27dlem2 42967 . . . . . . 7 2 ∈ (1...3)
6 ffvelcdm 7115 . . . . . . 7 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
71, 5, 6sylancl 585 . . . . . 6 (𝑎 ∈ (ℕ0m (1...3)) → (𝑎‘2) ∈ ℕ0)
8 elnn0 12555 . . . . . 6 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
97, 8sylib 218 . . . . 5 (𝑎 ∈ (ℕ0m (1...3)) → ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
10 iba 527 . . . . . . 7 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))))
11 andi 1008 . . . . . . 7 (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0)) ↔ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))
1210, 11bitrdi 287 . . . . . 6 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0))))
1312anbi2d 629 . . . . 5 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))))
149, 13syl 17 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))))
15 simplr 768 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ (ℤ‘2))
16 nnz 12660 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘2) ∈ ℤ)
18 frmy 42871 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1918fovcl 7578 . . . . . . . . . . . . 13 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℤ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ)
2015, 17, 19syl2anc 583 . . . . . . . . . . . 12 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ)
21 rmy0 42886 . . . . . . . . . . . . . 14 ((𝑎‘1) ∈ (ℤ‘2) → ((𝑎‘1) Yrm 0) = 0)
2221ad2antlr 726 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm 0) = 0)
23 nngt0 12324 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → 0 < (𝑎‘2))
2423adantl 481 . . . . . . . . . . . . . 14 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 < (𝑎‘2))
25 0zd 12651 . . . . . . . . . . . . . . 15 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 ∈ ℤ)
26 ltrmy 42909 . . . . . . . . . . . . . . 15 (((𝑎‘1) ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (𝑎‘2) ∈ ℤ) → (0 < (𝑎‘2) ↔ ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2))))
2715, 25, 17, 26syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (0 < (𝑎‘2) ↔ ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2))))
2824, 27mpbid 232 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2)))
2922, 28eqbrtrrd 5190 . . . . . . . . . . . 12 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 < ((𝑎‘1) Yrm (𝑎‘2)))
30 elnnz 12649 . . . . . . . . . . . 12 (((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ ↔ (((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ ∧ 0 < ((𝑎‘1) Yrm (𝑎‘2))))
3120, 29, 30sylanbrc 582 . . . . . . . . . . 11 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ)
32 eleq1 2832 . . . . . . . . . . 11 ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) → ((𝑎‘3) ∈ ℕ ↔ ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ))
3331, 32syl5ibrcom 247 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) → (𝑎‘3) ∈ ℕ))
3433pm4.71rd 562 . . . . . . . . 9 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))))
35 simpllr 775 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘1) ∈ (ℤ‘2))
36 simplr 768 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘2) ∈ ℕ)
37 simpr 484 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘3) ∈ ℕ)
38 jm2.27 42965 . . . . . . . . . . 11 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
3935, 36, 37, 38syl3anc 1371 . . . . . . . . . 10 ((((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
4039pm5.32da 578 . . . . . . . . 9 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘3) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))))
4134, 40bitrd 279 . . . . . . . 8 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))))
4241ex 412 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘2) ∈ ℕ → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))))
4342pm5.32rd 577 . . . . . 6 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)))
44 oveq2 7456 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑎‘1) Yrm 0))
4544adantl 481 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑎‘1) Yrm 0))
4621ad2antlr 726 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm 0) = 0)
4745, 46eqtrd 2780 . . . . . . . . 9 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm (𝑎‘2)) = 0)
4847eqeq2d 2751 . . . . . . . 8 (((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑎‘3) = 0))
4948ex 412 . . . . . . 7 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑎‘3) = 0)))
5049pm5.32rd 577 . . . . . 6 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0) ↔ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))
5143, 50orbi12d 917 . . . . 5 ((𝑎 ∈ (ℕ0m (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)) ↔ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))))
5251pm5.32da 578 . . . 4 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))))
5314, 52bitrd 279 . . 3 (𝑎 ∈ (ℕ0m (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))))
5453rabbiia 3447 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))}
55 3nn0 12571 . . . 4 3 ∈ ℕ0
56 2z 12675 . . . 4 2 ∈ ℤ
57 ovex 7481 . . . . 5 (1...3) ∈ V
58 1nn 12304 . . . . . . . 8 1 ∈ ℕ
5958jm2.27dlem3 42968 . . . . . . 7 1 ∈ (1...1)
60 df-2 12356 . . . . . . 7 2 = (1 + 1)
6159, 60, 58jm2.27dlem2 42967 . . . . . 6 1 ∈ (1...2)
6261, 4, 2jm2.27dlem2 42967 . . . . 5 1 ∈ (1...3)
63 mzpproj 42693 . . . . 5 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
6457, 62, 63mp2an 691 . . . 4 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
65 eluzrabdioph 42762 . . . 4 ((3 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3))
6655, 56, 64, 65mp3an 1461 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3)
67 3nn 12372 . . . . . . . . 9 3 ∈ ℕ
6867jm2.27dlem3 42968 . . . . . . . 8 3 ∈ (1...3)
69 mzpproj 42693 . . . . . . . 8 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
7057, 68, 69mp2an 691 . . . . . . 7 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
71 elnnrabdioph 42763 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3))
7255, 70, 71mp2an 691 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3)
73 fvex 6933 . . . . . . . . . . . . . . . 16 (𝑖‘8) ∈ V
74 fvex 6933 . . . . . . . . . . . . . . . 16 (𝑖‘9) ∈ V
75 fvex 6933 . . . . . . . . . . . . . . . 16 (𝑖10) ∈ V
76 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑖‘9) → (𝑔↑2) = ((𝑖‘9)↑2))
77 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑖‘8) → (𝑓↑2) = ((𝑖‘8)↑2))
7877oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑖‘8) → (((𝑒↑2) − 1) · (𝑓↑2)) = (((𝑒↑2) − 1) · ((𝑖‘8)↑2)))
7976, 78oveqan12rd 7468 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9)) → ((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))))
8079eqeq1d 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9)) → (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ↔ (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1))
81803adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ↔ (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1))
82 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑖10) → ( + 1) = ((𝑖10) + 1))
8382oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑖10) → (( + 1) · (2 · ((𝑎‘3)↑2))) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))))
8483eqeq2d 2751 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑖10) → (𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ↔ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
85843ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ↔ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
8681, 853anbi12d 1437 . . . . . . . . . . . . . . . . . 18 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))))
8786anbi2d 629 . . . . . . . . . . . . . . . . 17 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ↔ ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))))))
88 oveq1 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑖‘8) → (𝑓 − (𝑎‘3)) = ((𝑖‘8) − (𝑎‘3)))
8988breq2d 5178 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑖‘8) → (𝑑 ∥ (𝑓 − (𝑎‘3)) ↔ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))))
9089anbi2d 629 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑖‘8) → (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ↔ ((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3)))))
91 oveq1 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑖‘8) → (𝑓 − (𝑎‘2)) = ((𝑖‘8) − (𝑎‘2)))
9291breq2d 5178 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑖‘8) → ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ↔ (2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2))))
9392anbi1d 630 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑖‘8) → (((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)) ↔ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))
9490, 93anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑖‘8) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
95943ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9687, 95anbi12d 631 . . . . . . . . . . . . . . . 16 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
9773, 74, 75, 96sbc3ie 3890 . . . . . . . . . . . . . . 15 ([(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9897sbcbii 3865 . . . . . . . . . . . . . 14 ([(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9998sbcbii 3865 . . . . . . . . . . . . 13 ([(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
10099sbcbii 3865 . . . . . . . . . . . 12 ([(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
101100sbcbii 3865 . . . . . . . . . . 11 ([(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
102101sbcbii 3865 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
103 fvex 6933 . . . . . . . . . . . . 13 (𝑖‘5) ∈ V
104 fvex 6933 . . . . . . . . . . . . 13 (𝑖‘6) ∈ V
105 fvex 6933 . . . . . . . . . . . . 13 (𝑖‘7) ∈ V
106 oveq1 7455 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑖‘6) → (𝑑↑2) = ((𝑖‘6)↑2))
1071063ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑑↑2) = ((𝑖‘6)↑2))
108 oveq1 7455 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑖‘5) → (𝑐↑2) = ((𝑖‘5)↑2))
109108oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑖‘5) → ((((𝑎‘1)↑2) − 1) · (𝑐↑2)) = ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)))
1101093ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑎‘1)↑2) − 1) · (𝑐↑2)) = ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)))
111107, 110oveq12d 7466 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))))
112111eqeq1d 2742 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
113 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → (𝑒 ∈ (ℤ‘2) ↔ (𝑖‘7) ∈ (ℤ‘2)))
1141133ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑒 ∈ (ℤ‘2) ↔ (𝑖‘7) ∈ (ℤ‘2)))
115112, 1143anbi23d 1439 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ↔ (((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))))
116 oveq1 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = (𝑖‘7) → (𝑒↑2) = ((𝑖‘7)↑2))
117116oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑖‘7) → ((𝑒↑2) − 1) = (((𝑖‘7)↑2) − 1))
118117oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑖‘7) → (((𝑒↑2) − 1) · ((𝑖‘8)↑2)) = ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))
119118oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))))
120119eqeq1d 2742 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ↔ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1))
1211203ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ↔ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1))
122 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑖‘5) → (𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
1231223ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
124 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → 𝑑 = (𝑖‘6))
125 oveq1 7455 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (𝑒 − (𝑎‘1)) = ((𝑖‘7) − (𝑎‘1)))
1261253ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑒 − (𝑎‘1)) = ((𝑖‘7) − (𝑎‘1)))
127124, 126breq12d 5179 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑑 ∥ (𝑒 − (𝑎‘1)) ↔ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))))
128121, 123, 1273anbi123d 1436 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))))
129115, 128anbi12d 631 . . . . . . . . . . . . . 14 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ↔ ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))))))
130 oveq1 7455 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (𝑒 − 1) = ((𝑖‘7) − 1))
131130breq2d 5178 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → ((2 · (𝑎‘3)) ∥ (𝑒 − 1) ↔ (2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1)))
132 breq1 5169 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑖‘6) → (𝑑 ∥ ((𝑖‘8) − (𝑎‘3)) ↔ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))))
133131, 132bi2anan9r 638 . . . . . . . . . . . . . . . 16 ((𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ↔ ((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3)))))
134133anbi1d 630 . . . . . . . . . . . . . . 15 ((𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
1351343adant1 1130 . . . . . . . . . . . . . 14 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
136129, 135anbi12d 631 . . . . . . . . . . . . 13 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
137103, 104, 105, 136sbc3ie 3890 . . . . . . . . . . . 12 ([(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
138137sbcbii 3865 . . . . . . . . . . 11 ([(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
139138sbcbii 3865 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
140 vex 3492 . . . . . . . . . . . 12 𝑖 ∈ V
141140resex 6058 . . . . . . . . . . 11 (𝑖 ↾ (1...3)) ∈ V
142 fvex 6933 . . . . . . . . . . 11 (𝑖‘4) ∈ V
143 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑖‘4) → (𝑏↑2) = ((𝑖‘4)↑2))
14462jm2.27dlem1 42966 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘1) = (𝑖‘1))
145144oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑖‘1)↑2))
146145oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑖‘1)↑2) − 1))
14768jm2.27dlem1 42966 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘3) = (𝑖‘3))
148147oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑖‘3)↑2))
149146, 148oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2)) = ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))
150143, 149oveqan12rd 7468 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))))
151150eqeq1d 2742 . . . . . . . . . . . . . 14 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ↔ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1))
152146oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)) = ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))
153152oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))))
154153eqeq1d 2742 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
155154adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
156151, 1553anbi12d 1437 . . . . . . . . . . . . 13 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ↔ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))))
157148oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (2 · ((𝑎‘3)↑2)) = (2 · ((𝑖‘3)↑2)))
158157oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))))
159158eqeq2d 2751 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))))
160144oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘7) − (𝑎‘1)) = ((𝑖‘7) − (𝑖‘1)))
161160breq2d 5178 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)) ↔ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))
162159, 1613anbi23d 1439 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))))
163162adantr 480 . . . . . . . . . . . . 13 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))))
164156, 163anbi12d 631 . . . . . . . . . . . 12 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ↔ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))))
165147oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (2 · (𝑎‘3)) = (2 · (𝑖‘3)))
166165breq1d 5176 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ↔ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)))
167147oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘8) − (𝑎‘3)) = ((𝑖‘8) − (𝑖‘3)))
168167breq2d 5178 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3)) ↔ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))))
169166, 168anbi12d 631 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ↔ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))))
1705jm2.27dlem1 42966 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘2) = (𝑖‘2))
171170oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘8) − (𝑎‘2)) = ((𝑖‘8) − (𝑖‘2)))
172165, 171breq12d 5179 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ↔ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))))
173170, 147breq12d 5179 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘2) ≤ (𝑎‘3) ↔ (𝑖‘2) ≤ (𝑖‘3)))
174172, 173anbi12d 631 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)) ↔ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))
175169, 174anbi12d 631 . . . . . . . . . . . . 13 (𝑎 = (𝑖 ↾ (1...3)) → ((((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
176175adantr 480 . . . . . . . . . . . 12 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
177164, 176anbi12d 631 . . . . . . . . . . 11 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))))
178141, 142, 177sbc2ie 3887 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
179102, 139, 1783bitri 297 . . . . . . . . 9 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
180179rabbii 3449 . . . . . . . 8 {𝑖 ∈ (ℕ0m (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} = {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))}
181 10nn0 12776 . . . . . . . . . . . 12 10 ∈ ℕ0
182 ovex 7481 . . . . . . . . . . . . . . 15 (1...10) ∈ V
183 df-5 12359 . . . . . . . . . . . . . . . . 17 5 = (4 + 1)
184 df-6 12360 . . . . . . . . . . . . . . . . . 18 6 = (5 + 1)
185 df-7 12361 . . . . . . . . . . . . . . . . . . 19 7 = (6 + 1)
186 df-8 12362 . . . . . . . . . . . . . . . . . . . 20 8 = (7 + 1)
187 df-9 12363 . . . . . . . . . . . . . . . . . . . . 21 9 = (8 + 1)
188 9p1e10 12760 . . . . . . . . . . . . . . . . . . . . . . 23 (9 + 1) = 10
189188eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . 22 10 = (9 + 1)
190 ssid 4031 . . . . . . . . . . . . . . . . . . . . . 22 (1...10) ⊆ (1...10)
191189, 190jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . . . . 21 (1...9) ⊆ (1...10)
192187, 191jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . . . 20 (1...8) ⊆ (1...10)
193186, 192jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . . 19 (1...7) ⊆ (1...10)
194185, 193jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . 18 (1...6) ⊆ (1...10)
195184, 194jm2.27dlem5 42970 . . . . . . . . . . . . . . . . 17 (1...5) ⊆ (1...10)
196183, 195jm2.27dlem5 42970 . . . . . . . . . . . . . . . 16 (1...4) ⊆ (1...10)
197 4nn 12376 . . . . . . . . . . . . . . . . 17 4 ∈ ℕ
198197jm2.27dlem3 42968 . . . . . . . . . . . . . . . 16 4 ∈ (1...4)
199196, 198sselii 4005 . . . . . . . . . . . . . . 15 4 ∈ (1...10)
200 mzpproj 42693 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 4 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10)))
201182, 199, 200mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10))
202 2nn0 12570 . . . . . . . . . . . . . 14 2 ∈ ℕ0
203 mzpexpmpt 42701 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10)))
204201, 202, 203mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10))
205 df-4 12358 . . . . . . . . . . . . . . . . . . . . 21 4 = (3 + 1)
206205, 196jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . . . 20 (1...3) ⊆ (1...10)
2074, 206jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . . 19 (1...2) ⊆ (1...10)
20860, 207jm2.27dlem5 42970 . . . . . . . . . . . . . . . . . 18 (1...1) ⊆ (1...10)
209208, 59sselii 4005 . . . . . . . . . . . . . . . . 17 1 ∈ (1...10)
210 mzpproj 42693 . . . . . . . . . . . . . . . . 17 (((1...10) ∈ V ∧ 1 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10)))
211182, 209, 210mp2an 691 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10))
212 mzpexpmpt 42701 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10)))
213211, 202, 212mp2an 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10))
214 1z 12673 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
215 mzpconstmpt 42696 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 1 ∈ ℤ) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10)))
216182, 214, 215mp2an 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))
217 mzpsubmpt 42699 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)))
218213, 216, 217mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10))
219206, 68sselii 4005 . . . . . . . . . . . . . . . 16 3 ∈ (1...10)
220 mzpproj 42693 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 3 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10)))
221182, 219, 220mp2an 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))
222 mzpexpmpt 42701 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10)))
223221, 202, 222mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))
224 mzpmulmpt 42698 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10)))
225218, 223, 224mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))
226 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)))
227204, 225, 226mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))
228 eqrabdioph 42733 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10))
229181, 227, 216, 228mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10)
230 6nn 12382 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
231230jm2.27dlem3 42968 . . . . . . . . . . . . . . . 16 6 ∈ (1...6)
232194, 231sselii 4005 . . . . . . . . . . . . . . 15 6 ∈ (1...10)
233 mzpproj 42693 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 6 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)))
234182, 232, 233mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10))
235 mzpexpmpt 42701 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10)))
236234, 202, 235mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10))
237 5nn 12379 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ
238237jm2.27dlem3 42968 . . . . . . . . . . . . . . . . 17 5 ∈ (1...5)
239195, 238sselii 4005 . . . . . . . . . . . . . . . 16 5 ∈ (1...10)
240 mzpproj 42693 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 5 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)))
241182, 239, 240mp2an 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10))
242 mzpexpmpt 42701 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10)))
243241, 202, 242mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10))
244 mzpmulmpt 42698 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10)))
245218, 243, 244mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10))
246 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10)))
247236, 245, 246mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10))
248 eqrabdioph 42733 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10))
249181, 247, 216, 248mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10)
250 7nn 12385 . . . . . . . . . . . . . . 15 7 ∈ ℕ
251250jm2.27dlem3 42968 . . . . . . . . . . . . . 14 7 ∈ (1...7)
252193, 251sselii 4005 . . . . . . . . . . . . 13 7 ∈ (1...10)
253 mzpproj 42693 . . . . . . . . . . . . 13 (((1...10) ∈ V ∧ 7 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)))
254182, 252, 253mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10))
255 eluzrabdioph 42762 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10))
256181, 56, 254, 255mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10)
257 3anrabdioph 42738 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10))
258229, 249, 256, 257mp3an 1461 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10)
259 9nn 12391 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
260259jm2.27dlem3 42968 . . . . . . . . . . . . . . . 16 9 ∈ (1...9)
261260, 189, 259jm2.27dlem2 42967 . . . . . . . . . . . . . . 15 9 ∈ (1...10)
262 mzpproj 42693 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 9 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10)))
263182, 261, 262mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10))
264 mzpexpmpt 42701 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10)))
265263, 202, 264mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10))
266 mzpexpmpt 42701 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10)))
267254, 202, 266mp2an 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10))
268 mzpsubmpt 42699 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10)))
269267, 216, 268mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10))
270 8nn 12388 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
271270jm2.27dlem3 42968 . . . . . . . . . . . . . . . . 17 8 ∈ (1...8)
272192, 271sselii 4005 . . . . . . . . . . . . . . . 16 8 ∈ (1...10)
273 mzpproj 42693 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 8 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)))
274182, 272, 273mp2an 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10))
275 mzpexpmpt 42701 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10)))
276274, 202, 275mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10))
277 mzpmulmpt 42698 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10)))
278269, 276, 277mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10))
279 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10)))
280265, 278, 279mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10))
281 eqrabdioph 42733 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10))
282181, 280, 216, 281mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10)
283 10nn 12774 . . . . . . . . . . . . . . . 16 10 ∈ ℕ
284283jm2.27dlem3 42968 . . . . . . . . . . . . . . 15 10 ∈ (1...10)
285 mzpproj 42693 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 10 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10)))
286182, 284, 285mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10))
287 mzpaddmpt 42697 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10)))
288286, 216, 287mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10))
289 mzpconstmpt 42696 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 2 ∈ ℤ) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)))
290182, 56, 289mp2an 691 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10))
291 mzpmulmpt 42698 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10)))
292290, 223, 291mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))
293 mzpmulmpt 42698 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)))
294288, 292, 293mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))
295 eqrabdioph 42733 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10))
296181, 241, 294, 295mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10)
297 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10)))
298254, 211, 297mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10))
299 dvdsrabdioph 42766 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10))
300181, 234, 298, 299mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10)
301 3anrabdioph 42738 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10))
302282, 296, 300, 301mp3an 1461 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10)
303 anrabdioph 42736 . . . . . . . . . 10 (({𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10))
304258, 302, 303mp2an 691 . . . . . . . . 9 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10)
305 mzpmulmpt 42698 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)))
306290, 221, 305mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10))
307 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10)))
308254, 216, 307mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10))
309 dvdsrabdioph 42766 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10))
310181, 306, 308, 309mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10)
311 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10)))
312274, 221, 311mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10))
313 dvdsrabdioph 42766 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10))
314181, 234, 312, 313mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10)
315 anrabdioph 42736 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10))
316310, 314, 315mp2an 691 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10)
317207, 3sselii 4005 . . . . . . . . . . . . . 14 2 ∈ (1...10)
318 mzpproj 42693 . . . . . . . . . . . . . 14 (((1...10) ∈ V ∧ 2 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10)))
319182, 317, 318mp2an 691 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10))
320 mzpsubmpt 42699 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10)))
321274, 319, 320mp2an 691 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10))
322 dvdsrabdioph 42766 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10))
323181, 306, 321, 322mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10)
324 lerabdioph 42761 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑m (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10))
325181, 319, 221, 324mp3an 1461 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10)
326 anrabdioph 42736 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10))
327323, 325, 326mp2an 691 . . . . . . . . . 10 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10)
328 anrabdioph 42736 . . . . . . . . . 10 (({𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10))
329316, 327, 328mp2an 691 . . . . . . . . 9 {𝑖 ∈ (ℕ0m (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10)
330 anrabdioph 42736 . . . . . . . . 9 (({𝑖 ∈ (ℕ0m (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))} ∈ (Dioph‘10))
331304, 329, 330mp2an 691 . . . . . . . 8 {𝑖 ∈ (ℕ0m (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))} ∈ (Dioph‘10)
332180, 331eqeltri 2840 . . . . . . 7 {𝑖 ∈ (ℕ0m (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘10)
333205, 183, 184, 185, 186, 187, 1897rexfrabdioph 42756 . . . . . . 7 ((3 ∈ ℕ0 ∧ {𝑖 ∈ (ℕ0m (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘10)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3))
33455, 332, 333mp2an 691 . . . . . 6 {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3)
335 anrabdioph 42736 . . . . . 6 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3))
33672, 334, 335mp2an 691 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3)
337 mzpproj 42693 . . . . . . 7 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
33857, 5, 337mp2an 691 . . . . . 6 (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
339 elnnrabdioph 42763 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
34055, 338, 339mp2an 691 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
341 anrabdioph 42736 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3))
342336, 340, 341mp2an 691 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3)
343 eq0rabdioph 42732 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
34455, 70, 343mp2an 691 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
345 eq0rabdioph 42732 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
34655, 338, 345mp2an 691 . . . . 5 {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
347 anrabdioph 42736 . . . . 5 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3))
348344, 346, 347mp2an 691 . . . 4 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3)
349 orrabdioph 42737 . . . 4 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3))
350342, 348, 349mp2an 691 . . 3 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3)
351 anrabdioph 42736 . . 3 (({𝑎 ∈ (ℕ0m (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0m (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))} ∈ (Dioph‘3))
35266, 350, 351mp2an 691 . 2 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))} ∈ (Dioph‘3)
35354, 352eqeltri 2840 1 {𝑎 ∈ (ℕ0m (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  [wsbc 3804   class class class wbr 5166  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  7c7 12353  8c8 12354  9c9 12355  0cn0 12553  cz 12639  cdc 12758  cuz 12903  ...cfz 13567  cexp 14112  cdvds 16302  mzPolycmzp 42678  Diophcdioph 42711   Yrm crmy 42857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-mzpcl 42679  df-mzp 42680  df-dioph 42712  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by:  rmxdioph  42973  expdiophlem2  42979
  Copyright terms: Public domain W3C validator