MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc5ALT Structured version   Visualization version   GIF version

Theorem sbc5ALT 3749
Description: Alternate proof of sbc5 3748. This proof helps show how clelab 2885 works, since it is equivalent but shorter thanks to now-available library theorems like vtoclbg 3506 and isset 3444. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc5ALT ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc5ALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3730 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 exsimpl 1875 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) → ∃𝑥 𝑥 = 𝐴)
3 isset 3444 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
42, 3sylibr 233 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
5 dfsbcq2 3723 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
6 eqeq2 2752 . . . . 5 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
76anbi1d 630 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
87exbidv 1928 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
9 sb5 2272 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
105, 8, 9vtoclbg 3506 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
111, 4, 10pm5.21nii 380 1 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wex 1786  [wsb 2071  wcel 2110  Vcvv 3431  [wsbc 3720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-sbc 3721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator