Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccom2 Structured version   Visualization version   GIF version

Theorem sbccom2 36331
Description: Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypothesis
Ref Expression
sbccom2.1 𝐴 ∈ V
Assertion
Ref Expression
sbccom2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem sbccom2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccow 3744 . . . . . . 7 ([𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑦]𝜑)
21bicomi 223 . . . . . 6 ([𝐵 / 𝑦]𝜑[𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
32sbcbii 3781 . . . . 5 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
4 sbccow 3744 . . . . . 6 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
54bicomi 223 . . . . 5 ([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
6 vex 3441 . . . . . . 7 𝑧 ∈ V
76sbccom2lem 36330 . . . . . 6 ([𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
87sbcbii 3781 . . . . 5 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑧][𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
93, 5, 83bitri 297 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑧][𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
10 sbccom2.1 . . . . 5 𝐴 ∈ V
1110sbccom2lem 36330 . . . 4 ([𝐴 / 𝑧][𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
12 sbccow 3744 . . . . 5 ([𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
1312sbcbii 3781 . . . 4 ([𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
149, 11, 133bitri 297 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
15 csbcow 3852 . . . 4 𝐴 / 𝑧𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
16 dfsbcq 3723 . . . 4 (𝐴 / 𝑧𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵 → ([𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑))
1715, 16ax-mp 5 . . 3 ([𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
1814, 17bitri 275 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
19 sbccom 3809 . . 3 ([𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝑤 / 𝑦][𝐴 / 𝑥]𝜑)
2019sbcbii 3781 . 2 ([𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑥]𝜑)
21 sbccow 3744 . 2 ([𝐴 / 𝑥𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
2218, 20, 213bitri 297 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  Vcvv 3437  [wsbc 3721  csb 3837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-v 3439  df-sbc 3722  df-csb 3838
This theorem is referenced by:  sbccom2f  36332
  Copyright terms: Public domain W3C validator