Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccom2 Structured version   Visualization version   GIF version

Theorem sbccom2 36262
Description: Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypothesis
Ref Expression
sbccom2.1 𝐴 ∈ V
Assertion
Ref Expression
sbccom2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem sbccom2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccow 3742 . . . . . . 7 ([𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑦]𝜑)
21bicomi 223 . . . . . 6 ([𝐵 / 𝑦]𝜑[𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
32sbcbii 3780 . . . . 5 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
4 sbccow 3742 . . . . . 6 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
54bicomi 223 . . . . 5 ([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
6 vex 3434 . . . . . . 7 𝑧 ∈ V
76sbccom2lem 36261 . . . . . 6 ([𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
87sbcbii 3780 . . . . 5 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑧][𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
93, 5, 83bitri 296 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑧][𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
10 sbccom2.1 . . . . 5 𝐴 ∈ V
1110sbccom2lem 36261 . . . 4 ([𝐴 / 𝑧][𝑧 / 𝑥𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
12 sbccow 3742 . . . . 5 ([𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
1312sbcbii 3780 . . . 4 ([𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
149, 11, 133bitri 296 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
15 csbcow 3851 . . . 4 𝐴 / 𝑧𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
16 dfsbcq 3721 . . . 4 (𝐴 / 𝑧𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵 → ([𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑))
1715, 16ax-mp 5 . . 3 ([𝐴 / 𝑧𝑧 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
1814, 17bitri 274 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)
19 sbccom 3808 . . 3 ([𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝑤 / 𝑦][𝐴 / 𝑥]𝜑)
2019sbcbii 3780 . 2 ([𝐴 / 𝑥𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑥]𝜑)
21 sbccow 3742 . 2 ([𝐴 / 𝑥𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
2218, 20, 213bitri 296 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  Vcvv 3430  [wsbc 3719  csb 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-v 3432  df-sbc 3720  df-csb 3837
This theorem is referenced by:  sbccom2f  36263
  Copyright terms: Public domain W3C validator