Step | Hyp | Ref
| Expression |
1 | | sbccow 3744 |
. . . . . . 7
⊢
([𝐵 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜑) |
2 | 1 | bicomi 223 |
. . . . . 6
⊢
([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑤][𝑤 / 𝑦]𝜑) |
3 | 2 | sbcbii 3781 |
. . . . 5
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑) |
4 | | sbccow 3744 |
. . . . . 6
⊢
([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑) |
5 | 4 | bicomi 223 |
. . . . 5
⊢
([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑) |
6 | | vex 3441 |
. . . . . . 7
⊢ 𝑧 ∈ V |
7 | 6 | sbccom2lem 36330 |
. . . . . 6
⊢
([𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
8 | 7 | sbcbii 3781 |
. . . . 5
⊢
([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝐴 / 𝑧][⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
9 | 3, 5, 8 | 3bitri 297 |
. . . 4
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐴 / 𝑧][⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
10 | | sbccom2.1 |
. . . . 5
⊢ 𝐴 ∈ V |
11 | 10 | sbccom2lem 36330 |
. . . 4
⊢
([𝐴 / 𝑧][⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑧⦌⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
12 | | sbccow 3744 |
. . . . 5
⊢
([𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝐴 / 𝑥][𝑤 / 𝑦]𝜑) |
13 | 12 | sbcbii 3781 |
. . . 4
⊢
([⦋𝐴 / 𝑧⦌⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑧][𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑧⦌⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑) |
14 | 9, 11, 13 | 3bitri 297 |
. . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑧⦌⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑) |
15 | | csbcow 3852 |
. . . 4
⊢
⦋𝐴 /
𝑧⦌⦋𝑧 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
16 | | dfsbcq 3723 |
. . . 4
⊢
(⦋𝐴 /
𝑧⦌⦋𝑧 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 → ([⦋𝐴 / 𝑧⦌⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑)) |
17 | 15, 16 | ax-mp 5 |
. . 3
⊢
([⦋𝐴 / 𝑧⦌⦋𝑧 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑) |
18 | 14, 17 | bitri 275 |
. 2
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑) |
19 | | sbccom 3809 |
. . 3
⊢
([𝐴 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦][𝐴 / 𝑥]𝜑) |
20 | 19 | sbcbii 3781 |
. 2
⊢
([⦋𝐴 / 𝑥⦌𝐵 / 𝑤][𝐴 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑥]𝜑) |
21 | | sbccow 3744 |
. 2
⊢
([⦋𝐴 / 𝑥⦌𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) |
22 | 18, 20, 21 | 3bitri 297 |
1
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) |