Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasvd Structured version   Visualization version   GIF version

Theorem riotasvd 37274
Description: Deduction version of riotasv 37277. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotasvd.1 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasvd.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
riotasvd ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 riotasvd.1 . . . . . . . . 9 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
21adantr 481 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
3 riotasvd.2 . . . . . . . . 9 (𝜑𝐷𝐴)
43adantr 481 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷𝐴)
52, 4eqeltrrd 2838 . . . . . . 7 ((𝜑𝐴𝑉) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴)
6 riotaclbgBAD 37272 . . . . . . . 8 (𝐴𝑉 → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
76adantl 482 . . . . . . 7 ((𝜑𝐴𝑉) → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
85, 7mpbird 256 . . . . . 6 ((𝜑𝐴𝑉) → ∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
9 riotasbc 7313 . . . . . 6 (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
108, 9syl 17 . . . . 5 ((𝜑𝐴𝑉) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
11 eqeq1 2740 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = 𝐶𝑧 = 𝐶))
1211imbi2d 340 . . . . . . . 8 (𝑥 = 𝑧 → ((𝜓𝑥 = 𝐶) ↔ (𝜓𝑧 = 𝐶)))
1312ralbidv 3170 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓𝑧 = 𝐶)))
14 nfra1 3263 . . . . . . . . . 10 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
15 nfcv 2904 . . . . . . . . . 10 𝑦𝐴
1614, 15nfriota 7307 . . . . . . . . 9 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
1716nfeq2 2921 . . . . . . . 8 𝑦 𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
18 eqeq1 2740 . . . . . . . . 9 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (𝑧 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
1918imbi2d 340 . . . . . . . 8 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → ((𝜓𝑧 = 𝐶) ↔ (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2017, 19ralbid 3252 . . . . . . 7 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (∀𝑦𝐵 (𝜓𝑧 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2113, 20sbcie2g 3769 . . . . . 6 ((𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴 → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
225, 21syl 17 . . . . 5 ((𝜑𝐴𝑉) → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2310, 22mpbid 231 . . . 4 ((𝜑𝐴𝑉) → ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
24 rsp 3226 . . . 4 (∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2523, 24syl 17 . . 3 ((𝜑𝐴𝑉) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2625impd 411 . 2 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
272eqeq1d 2738 . 2 ((𝜑𝐴𝑉) → (𝐷 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
2826, 27sylibrd 258 1 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  ∃!wreu 3347  [wsbc 3727  crio 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-riotaBAD 37271
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6432  df-fun 6482  df-fv 6488  df-riota 7294  df-undef 8160
This theorem is referenced by:  riotasv2d  37275  riotasv  37277  riotasv3d  37278  cdleme32a  38760
  Copyright terms: Public domain W3C validator