Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasvd Structured version   Visualization version   GIF version

Theorem riotasvd 36970
Description: Deduction version of riotasv 36973. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotasvd.1 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasvd.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
riotasvd ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 riotasvd.1 . . . . . . . . 9 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
21adantr 481 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
3 riotasvd.2 . . . . . . . . 9 (𝜑𝐷𝐴)
43adantr 481 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷𝐴)
52, 4eqeltrrd 2840 . . . . . . 7 ((𝜑𝐴𝑉) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴)
6 riotaclbgBAD 36968 . . . . . . . 8 (𝐴𝑉 → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
76adantl 482 . . . . . . 7 ((𝜑𝐴𝑉) → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
85, 7mpbird 256 . . . . . 6 ((𝜑𝐴𝑉) → ∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
9 riotasbc 7251 . . . . . 6 (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
108, 9syl 17 . . . . 5 ((𝜑𝐴𝑉) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
11 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = 𝐶𝑧 = 𝐶))
1211imbi2d 341 . . . . . . . 8 (𝑥 = 𝑧 → ((𝜓𝑥 = 𝐶) ↔ (𝜓𝑧 = 𝐶)))
1312ralbidv 3112 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓𝑧 = 𝐶)))
14 nfra1 3144 . . . . . . . . . 10 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
15 nfcv 2907 . . . . . . . . . 10 𝑦𝐴
1614, 15nfriota 7245 . . . . . . . . 9 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
1716nfeq2 2924 . . . . . . . 8 𝑦 𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
18 eqeq1 2742 . . . . . . . . 9 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (𝑧 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
1918imbi2d 341 . . . . . . . 8 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → ((𝜓𝑧 = 𝐶) ↔ (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2017, 19ralbid 3161 . . . . . . 7 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (∀𝑦𝐵 (𝜓𝑧 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2113, 20sbcie2g 3758 . . . . . 6 ((𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴 → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
225, 21syl 17 . . . . 5 ((𝜑𝐴𝑉) → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2310, 22mpbid 231 . . . 4 ((𝜑𝐴𝑉) → ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
24 rsp 3131 . . . 4 (∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2523, 24syl 17 . . 3 ((𝜑𝐴𝑉) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2625impd 411 . 2 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
272eqeq1d 2740 . 2 ((𝜑𝐴𝑉) → (𝐷 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
2826, 27sylibrd 258 1 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  [wsbc 3716  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-undef 8089
This theorem is referenced by:  riotasv2d  36971  riotasv  36973  riotasv3d  36974  cdleme32a  38455
  Copyright terms: Public domain W3C validator