Step | Hyp | Ref
| Expression |
1 | | riotasvd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) |
2 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) |
3 | | riotasvd.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐷 ∈ 𝐴) |
5 | 2, 4 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) ∈ 𝐴) |
6 | | riotaclbgBAD 36895 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) ∈ 𝐴)) |
7 | 6 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) ∈ 𝐴)) |
8 | 5, 7 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) |
9 | | riotasbc 7231 |
. . . . . 6
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) → [(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) / 𝑥]∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) / 𝑥]∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) |
11 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑧 = 𝐶)) |
12 | 11 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝜓 → 𝑥 = 𝐶) ↔ (𝜓 → 𝑧 = 𝐶))) |
13 | 12 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) ↔ ∀𝑦 ∈ 𝐵 (𝜓 → 𝑧 = 𝐶))) |
14 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) |
15 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐴 |
16 | 14, 15 | nfriota 7225 |
. . . . . . . . 9
⊢
Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) |
17 | 16 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑧 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) |
18 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑧 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) → (𝑧 = 𝐶 ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶)) |
19 | 18 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑧 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) → ((𝜓 → 𝑧 = 𝐶) ↔ (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶))) |
20 | 17, 19 | ralbid 3158 |
. . . . . . 7
⊢ (𝑧 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) → (∀𝑦 ∈ 𝐵 (𝜓 → 𝑧 = 𝐶) ↔ ∀𝑦 ∈ 𝐵 (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶))) |
21 | 13, 20 | sbcie2g 3753 |
. . . . . 6
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) ∈ 𝐴 → ([(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) / 𝑥]∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) ↔ ∀𝑦 ∈ 𝐵 (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶))) |
22 | 5, 21 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ([(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) / 𝑥]∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) ↔ ∀𝑦 ∈ 𝐵 (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶))) |
23 | 10, 22 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ∀𝑦 ∈ 𝐵 (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶)) |
24 | | rsp 3129 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶) → (𝑦 ∈ 𝐵 → (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶))) |
25 | 23, 24 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ 𝐵 → (𝜓 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶))) |
26 | 25 | impd 410 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ((𝑦 ∈ 𝐵 ∧ 𝜓) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶)) |
27 | 2 | eqeq1d 2740 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐷 = 𝐶 ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) = 𝐶)) |
28 | 26, 27 | sylibrd 258 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶)) |