Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasvd Structured version   Visualization version   GIF version

Theorem riotasvd 38952
Description: Deduction version of riotasv 38955. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotasvd.1 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasvd.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
riotasvd ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 riotasvd.1 . . . . . . . . 9 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
21adantr 480 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
3 riotasvd.2 . . . . . . . . 9 (𝜑𝐷𝐴)
43adantr 480 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷𝐴)
52, 4eqeltrrd 2842 . . . . . . 7 ((𝜑𝐴𝑉) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴)
6 riotaclbgBAD 38950 . . . . . . . 8 (𝐴𝑉 → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
76adantl 481 . . . . . . 7 ((𝜑𝐴𝑉) → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
85, 7mpbird 257 . . . . . 6 ((𝜑𝐴𝑉) → ∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
9 riotasbc 7413 . . . . . 6 (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
108, 9syl 17 . . . . 5 ((𝜑𝐴𝑉) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
11 eqeq1 2741 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = 𝐶𝑧 = 𝐶))
1211imbi2d 340 . . . . . . . 8 (𝑥 = 𝑧 → ((𝜓𝑥 = 𝐶) ↔ (𝜓𝑧 = 𝐶)))
1312ralbidv 3178 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓𝑧 = 𝐶)))
14 nfra1 3284 . . . . . . . . . 10 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
15 nfcv 2905 . . . . . . . . . 10 𝑦𝐴
1614, 15nfriota 7407 . . . . . . . . 9 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
1716nfeq2 2923 . . . . . . . 8 𝑦 𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
18 eqeq1 2741 . . . . . . . . 9 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (𝑧 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
1918imbi2d 340 . . . . . . . 8 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → ((𝜓𝑧 = 𝐶) ↔ (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2017, 19ralbid 3273 . . . . . . 7 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (∀𝑦𝐵 (𝜓𝑧 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2113, 20sbcie2g 3837 . . . . . 6 ((𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴 → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
225, 21syl 17 . . . . 5 ((𝜑𝐴𝑉) → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2310, 22mpbid 232 . . . 4 ((𝜑𝐴𝑉) → ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
24 rsp 3247 . . . 4 (∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2523, 24syl 17 . . 3 ((𝜑𝐴𝑉) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2625impd 410 . 2 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
272eqeq1d 2739 . 2 ((𝜑𝐴𝑉) → (𝐷 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
2826, 27sylibrd 259 1 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wral 3061  ∃!wreu 3378  [wsbc 3794  crio 7394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-riotaBAD 38949
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-riota 7395  df-undef 8306
This theorem is referenced by:  riotasv2d  38953  riotasv  38955  riotasv3d  38956  cdleme32a  40438
  Copyright terms: Public domain W3C validator