Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj124 Structured version   Visualization version   GIF version

Theorem bnj124 32371
Description: Technical lemma for bnj150 32376. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj124.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj124.2 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj124.3 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj124.4 (𝜁″[𝐹 / 𝑓]𝜁′)
bnj124.5 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
Assertion
Ref Expression
bnj124 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝐹(𝑥,𝑓)   𝜑′(𝑥,𝑓)   𝜓′(𝑥,𝑓)   𝜁′(𝑥,𝑓)   𝜑″(𝑥,𝑓)   𝜓″(𝑥,𝑓)   𝜁″(𝑥,𝑓)

Proof of Theorem bnj124
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj124.4 . 2 (𝜁″[𝐹 / 𝑓]𝜁′)
2 bnj124.5 . . . 4 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
32sbcbii 3753 . . 3 ([𝐹 / 𝑓]𝜁′[𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
4 bnj124.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54bnj95 32364 . . . 4 𝐹 ∈ V
6 nfv 1915 . . . . 5 𝑓(𝑅 FrSe 𝐴𝑥𝐴)
76sbc19.21g 3769 . . . 4 (𝐹 ∈ V → ([𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′))))
85, 7ax-mp 5 . . 3 ([𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′)))
9 fneq1 6425 . . . . . . . 8 (𝑓 = 𝑧 → (𝑓 Fn 1o𝑧 Fn 1o))
10 fneq1 6425 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧 Fn 1o𝐹 Fn 1o))
119, 10sbcie2g 3736 . . . . . . 7 (𝐹 ∈ V → ([𝐹 / 𝑓]𝑓 Fn 1o𝐹 Fn 1o))
125, 11ax-mp 5 . . . . . 6 ([𝐹 / 𝑓]𝑓 Fn 1o𝐹 Fn 1o)
1312bicomi 227 . . . . 5 (𝐹 Fn 1o[𝐹 / 𝑓]𝑓 Fn 1o)
14 bnj124.2 . . . . 5 (𝜑″[𝐹 / 𝑓]𝜑′)
15 bnj124.3 . . . . 5 (𝜓″[𝐹 / 𝑓]𝜓′)
1613, 14, 15, 5bnj206 32229 . . . 4 ([𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′) ↔ (𝐹 Fn 1o𝜑″𝜓″))
1716imbi2i 339 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
183, 8, 173bitri 300 . 2 ([𝐹 / 𝑓]𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
191, 18bitri 278 1 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3409  [wsbc 3696  c0 4225  {csn 4522  cop 4528   Fn wfn 6330  1oc1o 8105   predc-bnj14 32186   FrSe w-bnj15 32190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-fun 6337  df-fn 6338
This theorem is referenced by:  bnj150  32376  bnj153  32380
  Copyright terms: Public domain W3C validator