![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj124 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 31463. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj124.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
bnj124.2 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
bnj124.3 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj124.4 | ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
bnj124.5 | ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
Ref | Expression |
---|---|
bnj124 | ⊢ (𝜁″ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj124.4 | . 2 ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) | |
2 | bnj124.5 | . . . 4 ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) | |
3 | 2 | sbcbii 3689 | . . 3 ⊢ ([𝐹 / 𝑓]𝜁′ ↔ [𝐹 / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
4 | bnj124.1 | . . . . 5 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | bnj95 31451 | . . . 4 ⊢ 𝐹 ∈ V |
6 | nfv 2010 | . . . . 5 ⊢ Ⅎ𝑓(𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) | |
7 | 6 | sbc19.21g 3698 | . . . 4 ⊢ (𝐹 ∈ V → ([𝐹 / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)))) |
8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ([𝐹 / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
9 | fneq1 6190 | . . . . . . . 8 ⊢ (𝑓 = 𝑧 → (𝑓 Fn 1𝑜 ↔ 𝑧 Fn 1𝑜)) | |
10 | fneq1 6190 | . . . . . . . 8 ⊢ (𝑧 = 𝐹 → (𝑧 Fn 1𝑜 ↔ 𝐹 Fn 1𝑜)) | |
11 | 9, 10 | sbcie2g 3667 | . . . . . . 7 ⊢ (𝐹 ∈ V → ([𝐹 / 𝑓]𝑓 Fn 1𝑜 ↔ 𝐹 Fn 1𝑜)) |
12 | 5, 11 | ax-mp 5 | . . . . . 6 ⊢ ([𝐹 / 𝑓]𝑓 Fn 1𝑜 ↔ 𝐹 Fn 1𝑜) |
13 | 12 | bicomi 216 | . . . . 5 ⊢ (𝐹 Fn 1𝑜 ↔ [𝐹 / 𝑓]𝑓 Fn 1𝑜) |
14 | bnj124.2 | . . . . 5 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
15 | bnj124.3 | . . . . 5 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
16 | 13, 14, 15, 5 | bnj206 31317 | . . . 4 ⊢ ([𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″)) |
17 | 16 | imbi2i 328 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
18 | 3, 8, 17 | 3bitri 289 | . 2 ⊢ ([𝐹 / 𝑓]𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
19 | 1, 18 | bitri 267 | 1 ⊢ (𝜁″ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 [wsbc 3633 ∅c0 4115 {csn 4368 〈cop 4374 Fn wfn 6096 1𝑜c1o 7792 predc-bnj14 31274 FrSe w-bnj15 31278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-fun 6103 df-fn 6104 |
This theorem is referenced by: bnj150 31463 bnj153 31467 |
Copyright terms: Public domain | W3C validator |