Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj124 Structured version   Visualization version   GIF version

Theorem bnj124 34907
Description: Technical lemma for bnj150 34912. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj124.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj124.2 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj124.3 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj124.4 (𝜁″[𝐹 / 𝑓]𝜁′)
bnj124.5 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
Assertion
Ref Expression
bnj124 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝐹(𝑥,𝑓)   𝜑′(𝑥,𝑓)   𝜓′(𝑥,𝑓)   𝜁′(𝑥,𝑓)   𝜑″(𝑥,𝑓)   𝜓″(𝑥,𝑓)   𝜁″(𝑥,𝑓)

Proof of Theorem bnj124
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj124.4 . 2 (𝜁″[𝐹 / 𝑓]𝜁′)
2 bnj124.5 . . . 4 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
32sbcbii 3827 . . 3 ([𝐹 / 𝑓]𝜁′[𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
4 bnj124.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54bnj95 34900 . . . 4 𝐹 ∈ V
6 nfv 1914 . . . . 5 𝑓(𝑅 FrSe 𝐴𝑥𝐴)
76sbc19.21g 3842 . . . 4 (𝐹 ∈ V → ([𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′))))
85, 7ax-mp 5 . . 3 ([𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′)))
9 fneq1 6634 . . . . . . . 8 (𝑓 = 𝑧 → (𝑓 Fn 1o𝑧 Fn 1o))
10 fneq1 6634 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧 Fn 1o𝐹 Fn 1o))
119, 10sbcie2g 3811 . . . . . . 7 (𝐹 ∈ V → ([𝐹 / 𝑓]𝑓 Fn 1o𝐹 Fn 1o))
125, 11ax-mp 5 . . . . . 6 ([𝐹 / 𝑓]𝑓 Fn 1o𝐹 Fn 1o)
1312bicomi 224 . . . . 5 (𝐹 Fn 1o[𝐹 / 𝑓]𝑓 Fn 1o)
14 bnj124.2 . . . . 5 (𝜑″[𝐹 / 𝑓]𝜑′)
15 bnj124.3 . . . . 5 (𝜓″[𝐹 / 𝑓]𝜓′)
1613, 14, 15, 5bnj206 34767 . . . 4 ([𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′) ↔ (𝐹 Fn 1o𝜑″𝜓″))
1716imbi2i 336 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
183, 8, 173bitri 297 . 2 ([𝐹 / 𝑓]𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
191, 18bitri 275 1 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  [wsbc 3770  c0 4313  {csn 4606  cop 4612   Fn wfn 6531  1oc1o 8478   predc-bnj14 34724   FrSe w-bnj15 34728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-fun 6538  df-fn 6539
This theorem is referenced by:  bnj150  34912  bnj153  34916
  Copyright terms: Public domain W3C validator