MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbralieALT Structured version   Visualization version   GIF version

Theorem sbralieALT 3367
Description: Alternative shorter proof of sbralie 3366 dependent on ax-ext 2711, df-cleq 2732, df-clel 2819. (Contributed by NM, 5-Sep-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
sbralie.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbralieALT (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem sbralieALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3323 . . 3 (∀𝑦𝑥 𝜓 ↔ ∀𝑧𝑥 [𝑧 / 𝑦]𝜓)
21sbbii 2076 . 2 ([𝑦 / 𝑥]∀𝑦𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑧𝑥 [𝑧 / 𝑦]𝜓)
3 raleq 3331 . . 3 (𝑥 = 𝑦 → (∀𝑧𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧𝑦 [𝑧 / 𝑦]𝜓))
43sbievw 2093 . 2 ([𝑦 / 𝑥]∀𝑧𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧𝑦 [𝑧 / 𝑦]𝜓)
5 cbvralsvw 3323 . . 3 (∀𝑧𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓)
6 sbco2vv 2099 . . . . 5 ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ [𝑥 / 𝑦]𝜓)
7 sbralie.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
87bicomd 223 . . . . . . 7 (𝑥 = 𝑦 → (𝜓𝜑))
98equcoms 2019 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
109sbievw 2093 . . . . 5 ([𝑥 / 𝑦]𝜓𝜑)
116, 10bitri 275 . . . 4 ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓𝜑)
1211ralbii 3099 . . 3 (∀𝑥𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ ∀𝑥𝑦 𝜑)
135, 12bitri 275 . 2 (∀𝑧𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥𝑦 𝜑)
142, 4, 133bitrri 298 1 (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2064  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator