MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhypfOLD Structured version   Visualization version   GIF version

Theorem sbhypfOLD 3557
Description: Obsolete version of sbhypf 3556 as of 25-Jan-2025. (Contributed by Raph Levien, 10-Apr-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypfOLD (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypfOLD
StepHypRef Expression
1 eqeq1 2744 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
21equsexvw 2004 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
3 nfs1v 2157 . . . 4 𝑥[𝑦 / 𝑥]𝜑
4 sbhypf.1 . . . 4 𝑥𝜓
53, 4nfbi 1902 . . 3 𝑥([𝑦 / 𝑥]𝜑𝜓)
6 sbequ12 2252 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
76bicomd 223 . . . 4 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
8 sbhypf.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
97, 8sylan9bb 509 . . 3 ((𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
105, 9exlimi 2218 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
112, 10sylbir 235 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-cleq 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator