MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhypfOLD Structured version   Visualization version   GIF version

Theorem sbhypfOLD 3539
Description: Obsolete version of sbhypf 3538 as of 25-Jan-2025. (Contributed by Raph Levien, 10-Apr-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypfOLD (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypfOLD
StepHypRef Expression
1 eqeq1 2736 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
21equsexvw 2008 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
3 nfs1v 2153 . . . 4 𝑥[𝑦 / 𝑥]𝜑
4 sbhypf.1 . . . 4 𝑥𝜓
53, 4nfbi 1906 . . 3 𝑥([𝑦 / 𝑥]𝜑𝜓)
6 sbequ12 2243 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
76bicomd 222 . . . 4 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
8 sbhypf.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
97, 8sylan9bb 510 . . 3 ((𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
105, 9exlimi 2210 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
112, 10sylbir 234 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wnf 1785  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-cleq 2724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator