| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the set-like predicate. (Contributed by Matthew House, 10-Sep-2025.) |
| Ref | Expression |
|---|---|
| seeq12d.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| seeq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seeq12d | ⊢ (𝜑 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seeq12d.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 2 | seeq12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | seeq1 5581 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) | |
| 4 | seeq2 5582 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 Se 𝐴 ↔ 𝑆 Se 𝐵)) | |
| 5 | 3, 4 | sylan9bb 509 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Se wse 5562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-br 5087 df-se 5565 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |