MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq12d Structured version   Visualization version   GIF version

Theorem seeq12d 5583
Description: Equality deduction for the set-like predicate. (Contributed by Matthew House, 10-Sep-2025.)
Hypotheses
Ref Expression
seeq12d.1 (𝜑𝑅 = 𝑆)
seeq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seeq12d (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))

Proof of Theorem seeq12d
StepHypRef Expression
1 seeq12d.1 . 2 (𝜑𝑅 = 𝑆)
2 seeq12d.2 . 2 (𝜑𝐴 = 𝐵)
3 seeq1 5581 . . 3 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
4 seeq2 5582 . . 3 (𝐴 = 𝐵 → (𝑆 Se 𝐴𝑆 Se 𝐵))
53, 4sylan9bb 509 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
61, 2, 5syl2anc 584 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541   Se wse 5562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-br 5087  df-se 5565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator