MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq12d Structured version   Visualization version   GIF version

Theorem seeq12d 5672
Description: Equality deduction for the set-like predicate. (Contributed by Matthew House, 10-Sep-2025.)
Hypotheses
Ref Expression
seeq12d.1 (𝜑𝑅 = 𝑆)
seeq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seeq12d (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))

Proof of Theorem seeq12d
StepHypRef Expression
1 seeq12d.1 . 2 (𝜑𝑅 = 𝑆)
2 seeq12d.2 . 2 (𝜑𝐴 = 𝐵)
3 seeq1 5670 . . 3 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
4 seeq2 5671 . . 3 (𝐴 = 𝐵 → (𝑆 Se 𝐴𝑆 Se 𝐵))
53, 4sylan9bb 509 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
61, 2, 5syl2anc 583 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537   Se wse 5650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-br 5167  df-se 5653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator