![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffr | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fr 5652 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏)) | |
2 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑎 | |
3 | nffr.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfss 4001 | . . . . 5 ⊢ Ⅎ𝑥 𝑎 ⊆ 𝐴 |
5 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑥 𝑎 ≠ ∅ | |
6 | 4, 5 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) |
7 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑐 | |
8 | nffr.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
9 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑏 | |
10 | 7, 8, 9 | nfbr 5213 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑐𝑅𝑏 |
11 | 10 | nfn 1856 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑐𝑅𝑏 |
12 | 2, 11 | nfralw 3317 | . . . . 5 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏 |
13 | 2, 12 | nfrexw 3319 | . . . 4 ⊢ Ⅎ𝑥∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏 |
14 | 6, 13 | nfim 1895 | . . 3 ⊢ Ⅎ𝑥((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏) |
15 | 14 | nfal 2327 | . 2 ⊢ Ⅎ𝑥∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏) |
16 | 1, 15 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1535 Ⅎwnf 1781 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Fr wfr 5649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-fr 5652 |
This theorem is referenced by: nfwe 5675 weiunfr 36433 |
Copyright terms: Public domain | W3C validator |