MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffr Structured version   Visualization version   GIF version

Theorem nffr 5614
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 5594 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏))
2 nfcv 2892 . . . . . 6 𝑥𝑎
3 nffr.a . . . . . 6 𝑥𝐴
42, 3nfss 3942 . . . . 5 𝑥 𝑎𝐴
5 nfv 1914 . . . . 5 𝑥 𝑎 ≠ ∅
64, 5nfan 1899 . . . 4 𝑥(𝑎𝐴𝑎 ≠ ∅)
7 nfcv 2892 . . . . . . . 8 𝑥𝑐
8 nffr.r . . . . . . . 8 𝑥𝑅
9 nfcv 2892 . . . . . . . 8 𝑥𝑏
107, 8, 9nfbr 5157 . . . . . . 7 𝑥 𝑐𝑅𝑏
1110nfn 1857 . . . . . 6 𝑥 ¬ 𝑐𝑅𝑏
122, 11nfralw 3287 . . . . 5 𝑥𝑐𝑎 ¬ 𝑐𝑅𝑏
132, 12nfrexw 3289 . . . 4 𝑥𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏
146, 13nfim 1896 . . 3 𝑥((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
1514nfal 2322 . 2 𝑥𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
161, 15nfxfr 1853 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wnf 1783  wnfc 2877  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110   Fr wfr 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-fr 5594
This theorem is referenced by:  nfwe  5616  weiunfr  36462
  Copyright terms: Public domain W3C validator