MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffr Structured version   Visualization version   GIF version

Theorem nffr 5651
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 5632 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏))
2 nfcv 2904 . . . . . 6 𝑥𝑎
3 nffr.a . . . . . 6 𝑥𝐴
42, 3nfss 3975 . . . . 5 𝑥 𝑎𝐴
5 nfv 1918 . . . . 5 𝑥 𝑎 ≠ ∅
64, 5nfan 1903 . . . 4 𝑥(𝑎𝐴𝑎 ≠ ∅)
7 nfcv 2904 . . . . . . . 8 𝑥𝑐
8 nffr.r . . . . . . . 8 𝑥𝑅
9 nfcv 2904 . . . . . . . 8 𝑥𝑏
107, 8, 9nfbr 5196 . . . . . . 7 𝑥 𝑐𝑅𝑏
1110nfn 1861 . . . . . 6 𝑥 ¬ 𝑐𝑅𝑏
122, 11nfralw 3309 . . . . 5 𝑥𝑐𝑎 ¬ 𝑐𝑅𝑏
132, 12nfrexw 3311 . . . 4 𝑥𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏
146, 13nfim 1900 . . 3 𝑥((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
1514nfal 2317 . 2 𝑥𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
161, 15nfxfr 1856 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wal 1540  wnf 1786  wnfc 2884  wne 2941  wral 3062  wrex 3071  wss 3949  c0 4323   class class class wbr 5149   Fr wfr 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-fr 5632
This theorem is referenced by:  nfwe  5653
  Copyright terms: Public domain W3C validator