![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffr | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fr 5637 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏)) | |
2 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝑎 | |
3 | nffr.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfss 3972 | . . . . 5 ⊢ Ⅎ𝑥 𝑎 ⊆ 𝐴 |
5 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑥 𝑎 ≠ ∅ | |
6 | 4, 5 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑥(𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) |
7 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑐 | |
8 | nffr.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
9 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑏 | |
10 | 7, 8, 9 | nfbr 5200 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑐𝑅𝑏 |
11 | 10 | nfn 1853 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑐𝑅𝑏 |
12 | 2, 11 | nfralw 3299 | . . . . 5 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏 |
13 | 2, 12 | nfrexw 3301 | . . . 4 ⊢ Ⅎ𝑥∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏 |
14 | 6, 13 | nfim 1892 | . . 3 ⊢ Ⅎ𝑥((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏) |
15 | 14 | nfal 2312 | . 2 ⊢ Ⅎ𝑥∀𝑎((𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑅𝑏) |
16 | 1, 15 | nfxfr 1848 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∀wal 1532 Ⅎwnf 1778 Ⅎwnfc 2876 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ⊆ wss 3947 ∅c0 4325 class class class wbr 5153 Fr wfr 5634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-fr 5637 |
This theorem is referenced by: nfwe 5658 |
Copyright terms: Public domain | W3C validator |