MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffr Structured version   Visualization version   GIF version

Theorem nffr 5563
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 5544 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏))
2 nfcv 2907 . . . . . 6 𝑥𝑎
3 nffr.a . . . . . 6 𝑥𝐴
42, 3nfss 3913 . . . . 5 𝑥 𝑎𝐴
5 nfv 1917 . . . . 5 𝑥 𝑎 ≠ ∅
64, 5nfan 1902 . . . 4 𝑥(𝑎𝐴𝑎 ≠ ∅)
7 nfcv 2907 . . . . . . . 8 𝑥𝑐
8 nffr.r . . . . . . . 8 𝑥𝑅
9 nfcv 2907 . . . . . . . 8 𝑥𝑏
107, 8, 9nfbr 5121 . . . . . . 7 𝑥 𝑐𝑅𝑏
1110nfn 1860 . . . . . 6 𝑥 ¬ 𝑐𝑅𝑏
122, 11nfralw 3151 . . . . 5 𝑥𝑐𝑎 ¬ 𝑐𝑅𝑏
132, 12nfrex 3242 . . . 4 𝑥𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏
146, 13nfim 1899 . . 3 𝑥((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
1514nfal 2317 . 2 𝑥𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
161, 15nfxfr 1855 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537  wnf 1786  wnfc 2887  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   class class class wbr 5074   Fr wfr 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-fr 5544
This theorem is referenced by:  nfwe  5565
  Copyright terms: Public domain W3C validator