MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffr Structured version   Visualization version   GIF version

Theorem nffr 5650
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fr 5631 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏))
2 nfcv 2903 . . . . . 6 𝑥𝑎
3 nffr.a . . . . . 6 𝑥𝐴
42, 3nfss 3974 . . . . 5 𝑥 𝑎𝐴
5 nfv 1917 . . . . 5 𝑥 𝑎 ≠ ∅
64, 5nfan 1902 . . . 4 𝑥(𝑎𝐴𝑎 ≠ ∅)
7 nfcv 2903 . . . . . . . 8 𝑥𝑐
8 nffr.r . . . . . . . 8 𝑥𝑅
9 nfcv 2903 . . . . . . . 8 𝑥𝑏
107, 8, 9nfbr 5195 . . . . . . 7 𝑥 𝑐𝑅𝑏
1110nfn 1860 . . . . . 6 𝑥 ¬ 𝑐𝑅𝑏
122, 11nfralw 3308 . . . . 5 𝑥𝑐𝑎 ¬ 𝑐𝑅𝑏
132, 12nfrexw 3310 . . . 4 𝑥𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏
146, 13nfim 1899 . . 3 𝑥((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
1514nfal 2316 . 2 𝑥𝑎((𝑎𝐴𝑎 ≠ ∅) → ∃𝑏𝑎𝑐𝑎 ¬ 𝑐𝑅𝑏)
161, 15nfxfr 1855 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1539  wnf 1785  wnfc 2883  wne 2940  wral 3061  wrex 3070  wss 3948  c0 4322   class class class wbr 5148   Fr wfr 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-fr 5631
This theorem is referenced by:  nfwe  5652
  Copyright terms: Public domain W3C validator