| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| seeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3989 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑆 ⊆ 𝑅) | |
| 2 | sess1 5579 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) |
| 4 | eqimss 3988 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑅 ⊆ 𝑆) | |
| 5 | sess1 5579 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 = 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⊆ wss 3897 Se wse 5565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-br 5090 df-se 5568 |
| This theorem is referenced by: seeq12d 5586 oieq1 9398 |
| Copyright terms: Public domain | W3C validator |