MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq1 Structured version   Visualization version   GIF version

Theorem seeq1 5650
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 4036 . . 3 (𝑅 = 𝑆𝑆𝑅)
2 sess1 5646 . . 3 (𝑆𝑅 → (𝑅 Se 𝐴𝑆 Se 𝐴))
31, 2syl 17 . 2 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
4 eqimss 4035 . . 3 (𝑅 = 𝑆𝑅𝑆)
5 sess1 5646 . . 3 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
64, 5syl 17 . 2 (𝑅 = 𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
73, 6impbid 211 1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wss 3944   Se wse 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rab 3419  df-v 3463  df-in 3951  df-ss 3961  df-br 5150  df-se 5634
This theorem is referenced by:  oieq1  9537
  Copyright terms: Public domain W3C validator