MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq2 Structured version   Visualization version   GIF version

Theorem seeq2 5630
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))

Proof of Theorem seeq2
StepHypRef Expression
1 eqimss2 4023 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 sess2 5625 . . 3 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
4 eqimss 4022 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 sess2 5625 . . 3 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wss 3931   Se wse 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rab 3421  df-v 3466  df-in 3938  df-ss 3948  df-se 5612
This theorem is referenced by:  seeq12d  5631  oieq2  9532
  Copyright terms: Public domain W3C validator