MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq2 Structured version   Visualization version   GIF version

Theorem seeq2 5585
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))

Proof of Theorem seeq2
StepHypRef Expression
1 eqimss2 3989 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 sess2 5580 . . 3 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
4 eqimss 3988 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 sess2 5580 . . 3 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wss 3897   Se wse 5565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-se 5568
This theorem is referenced by:  seeq12d  5586  oieq2  9399
  Copyright terms: Public domain W3C validator