MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Structured version   Visualization version   GIF version

Theorem simp111 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp111
StepHypRef Expression
1 simp11 1203 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  tsmsxp  23650  ps-2b  38341  llncvrlpln2  38416  4atlem11b  38467  4atlem12b  38470  lplncvrlvol2  38474  lneq2at  38637  2lnat  38643  cdlemblem  38652  4atexlemex6  38933  cdleme24  39211  cdleme26ee  39219  cdlemg2idN  39455  cdlemg31c  39558  cdlemk26-3  39765  0ellimcdiv  44351
  Copyright terms: Public domain W3C validator