MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Structured version   Visualization version   GIF version

Theorem simp111 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp111
StepHypRef Expression
1 simp11 1203 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  tsmsxp  23658  ps-2b  38348  llncvrlpln2  38423  4atlem11b  38474  4atlem12b  38477  lplncvrlvol2  38481  lneq2at  38644  2lnat  38650  cdlemblem  38659  4atexlemex6  38940  cdleme24  39218  cdleme26ee  39226  cdlemg2idN  39462  cdlemg31c  39565  cdlemk26-3  39772  0ellimcdiv  44355
  Copyright terms: Public domain W3C validator