MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Structured version   Visualization version   GIF version

Theorem simp111 1300
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp111
StepHypRef Expression
1 simp11 1201 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant1 1131 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  tsmsxp  23287  ps-2b  37475  llncvrlpln2  37550  4atlem11b  37601  4atlem12b  37604  lplncvrlvol2  37608  lneq2at  37771  2lnat  37777  cdlemblem  37786  4atexlemex6  38067  cdleme24  38345  cdleme26ee  38353  cdlemg2idN  38589  cdlemg31c  38692  cdlemk26-3  38899  0ellimcdiv  43144
  Copyright terms: Public domain W3C validator