MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Structured version   Visualization version   GIF version

Theorem simp111 1303
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp111
StepHypRef Expression
1 simp11 1204 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  tsmsxp  24093  ps-2b  39501  llncvrlpln2  39576  4atlem11b  39627  4atlem12b  39630  lplncvrlvol2  39634  lneq2at  39797  2lnat  39803  cdlemblem  39812  4atexlemex6  40093  cdleme24  40371  cdleme26ee  40379  cdlemg2idN  40615  cdlemg31c  40718  cdlemk26-3  40925  0ellimcdiv  45678
  Copyright terms: Public domain W3C validator