Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol2 Structured version   Visualization version   GIF version

Theorem lplncvrlvol2 39654
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol2.l = (le‘𝐾)
lplncvrlvol2.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol2.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem lplncvrlvol2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑌𝑉)
4 lplncvrlvol2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
5 lplncvrlvol2.v . . . . . 6 𝑉 = (LVols‘𝐾)
64, 5lvolnelpln 39629 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
72, 3, 6syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → ¬ 𝑌𝑃)
8 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑃)
9 eleq1 2819 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑃𝑌𝑃))
108, 9syl5ibcom 245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑃))
1110necon3bd 2942 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (¬ 𝑌𝑃𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 lplncvrlvol2.l . . . . 5 = (le‘𝐾)
14 eqid 2731 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 18231 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑃)
20 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4lplnbase 39573 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑉)
2420, 5lvolbase 39617 . . . . 5 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2731 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 lplncvrlvol2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2731 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 39451 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3118, 22, 25, 26, 30syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3220, 13, 27, 29, 5islvol2 39619 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
3332adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
34 simpr 484 . . . . . . . . . . 11 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
3520, 13, 27, 29, 4islpln2 39575 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))))
36 simp3rl 1247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶(𝑋(join‘𝐾)𝑠))
37 simp3rr 1248 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) 𝑌)
38 simp133 1311 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
3938oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
40 simp23 1209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
4137, 39, 403brtr3d 5117 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
42 simp11 1204 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)))
43 simp12 1205 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
44 simp3l 1202 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑠 ∈ (Atoms‘𝐾))
45 simp21l 1291 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑡 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)))
47 simp21r 1292 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑢 ∈ (Atoms‘𝐾))
48 simp22l 1293 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑣 ∈ (Atoms‘𝐾))
49 simp22r 1294 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑤 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)))
51 simp131 1309 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑝𝑞)
52 simp132 1310 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
5336, 38, 393brtr3d 5117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
54 simp111 1303 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ HL)
5554hllatd 39403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ Lat)
5620, 27, 29hlatjcl 39406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5742, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5820, 29atbase 39328 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
5943, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Base‘𝐾))
6020, 27latjcl 18340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ Lat ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6155, 57, 59, 60syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6220, 13, 27, 28, 29cvr1 39449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6354, 61, 44, 62syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6453, 63mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
6513, 27, 294at2 39653 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6642, 46, 50, 51, 52, 64, 65syl33anc 1387 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6741, 66mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
6867, 39, 403eqtr4d 2776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = 𝑌)
6936, 68breqtrd 5112 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶𝑌)
70693exp 1119 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)))
7170exp4a 431 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
72713expd 1354 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))
7372rexlimdv3a 3137 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
74733expib 1122 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))))
7574rexlimdvv 3188 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7675adantld 490 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7735, 76sylbid 240 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑃 → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7877imp31 417 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
7934, 78syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
8079rexlimdvv 3188 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → (∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8180rexlimdvva 3189 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8281adantld 490 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8333, 82sylbid 240 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
84833impia 1117 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))
8584rexlimdv 3131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))
8685imp 406 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)
8731, 86syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8817, 87syldan 591 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  ltcplt 18209  joincjn 18212  Latclat 18332  ccvr 39301  Atomscatm 39302  HLchlt 39389  LPlanesclpl 39531  LVolsclvol 39532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539
This theorem is referenced by:  lplncvrlvol  39655  lvolcmp  39656  2lplnm2N  39660  2lplnmj  39661
  Copyright terms: Public domain W3C validator