Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol2 Structured version   Visualization version   GIF version

Theorem lplncvrlvol2 39572
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol2.l = (le‘𝐾)
lplncvrlvol2.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol2.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem lplncvrlvol2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑌𝑉)
4 lplncvrlvol2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
5 lplncvrlvol2.v . . . . . 6 𝑉 = (LVols‘𝐾)
64, 5lvolnelpln 39547 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
72, 3, 6syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → ¬ 𝑌𝑃)
8 simpl2 1192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑃)
9 eleq1 2832 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑃𝑌𝑃))
108, 9syl5ibcom 245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑃))
1110necon3bd 2960 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (¬ 𝑌𝑃𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 lplncvrlvol2.l . . . . 5 = (le‘𝐾)
14 eqid 2740 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 18402 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑃)
20 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4lplnbase 39491 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑉)
2420, 5lvolbase 39535 . . . . 5 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2740 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 lplncvrlvol2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2740 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 39369 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3118, 22, 25, 26, 30syl31anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3220, 13, 27, 29, 5islvol2 39537 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
3332adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
34 simpr 484 . . . . . . . . . . 11 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
3520, 13, 27, 29, 4islpln2 39493 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))))
36 simp3rl 1246 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶(𝑋(join‘𝐾)𝑠))
37 simp3rr 1247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) 𝑌)
38 simp133 1310 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
3938oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
40 simp23 1208 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
4137, 39, 403brtr3d 5197 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
42 simp11 1203 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)))
43 simp12 1204 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
44 simp3l 1201 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑠 ∈ (Atoms‘𝐾))
45 simp21l 1290 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑡 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)))
47 simp21r 1291 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑢 ∈ (Atoms‘𝐾))
48 simp22l 1292 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑣 ∈ (Atoms‘𝐾))
49 simp22r 1293 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑤 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)))
51 simp131 1308 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑝𝑞)
52 simp132 1309 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
5336, 38, 393brtr3d 5197 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
54 simp111 1302 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ HL)
5554hllatd 39320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ Lat)
5620, 27, 29hlatjcl 39323 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5742, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5820, 29atbase 39245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
5943, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Base‘𝐾))
6020, 27latjcl 18509 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ Lat ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6155, 57, 59, 60syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6220, 13, 27, 28, 29cvr1 39367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6354, 61, 44, 62syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6453, 63mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
6513, 27, 294at2 39571 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6642, 46, 50, 51, 52, 64, 65syl33anc 1385 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6741, 66mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
6867, 39, 403eqtr4d 2790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = 𝑌)
6936, 68breqtrd 5192 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶𝑌)
70693exp 1119 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)))
7170exp4a 431 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
72713expd 1353 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))
7372rexlimdv3a 3165 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
74733expib 1122 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))))
7574rexlimdvv 3218 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7675adantld 490 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7735, 76sylbid 240 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑃 → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7877imp31 417 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
7934, 78syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
8079rexlimdvv 3218 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → (∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8180rexlimdvva 3219 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8281adantld 490 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8333, 82sylbid 240 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
84833impia 1117 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))
8584rexlimdv 3159 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))
8685imp 406 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)
8731, 86syldan 590 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8817, 87syldan 590 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  ltcplt 18378  joincjn 18381  Latclat 18501  ccvr 39218  Atomscatm 39219  HLchlt 39306  LPlanesclpl 39449  LVolsclvol 39450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457
This theorem is referenced by:  lplncvrlvol  39573  lvolcmp  39574  2lplnm2N  39578  2lplnmj  39579
  Copyright terms: Public domain W3C validator