Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol2 Structured version   Visualization version   GIF version

Theorem lplncvrlvol2 35571
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol2.l = (le‘𝐾)
lplncvrlvol2.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol2.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem lplncvrlvol2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑌𝑉)
4 lplncvrlvol2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
5 lplncvrlvol2.v . . . . . 6 𝑉 = (LVols‘𝐾)
64, 5lvolnelpln 35546 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
72, 3, 6syl2anc 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → ¬ 𝑌𝑃)
8 simpl2 1244 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑃)
9 eleq1 2832 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑃𝑌𝑃))
108, 9syl5ibcom 236 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑃))
1110necon3bd 2951 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (¬ 𝑌𝑃𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 lplncvrlvol2.l . . . . 5 = (le‘𝐾)
14 eqid 2765 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 17226 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 472 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 704 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1242 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑃)
20 eqid 2765 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4lplnbase 35490 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑉)
2420, 5lvolbase 35534 . . . . 5 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 477 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2765 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 lplncvrlvol2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2765 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 35368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3118, 22, 25, 26, 30syl31anc 1492 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3220, 13, 27, 29, 5islvol2 35536 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
3332adantr 472 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
34 simpr 477 . . . . . . . . . . 11 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
3520, 13, 27, 29, 4islpln2 35492 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))))
36 simp3rl 1327 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶(𝑋(join‘𝐾)𝑠))
37 simp3rr 1328 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) 𝑌)
38 simp133 1409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
3938oveq1d 6857 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
40 simp23 1265 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
4137, 39, 403brtr3d 4840 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
42 simp11 1260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)))
43 simp12 1261 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
44 simp3l 1258 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑠 ∈ (Atoms‘𝐾))
45 simp21l 1389 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑡 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)))
47 simp21r 1390 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑢 ∈ (Atoms‘𝐾))
48 simp22l 1391 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑣 ∈ (Atoms‘𝐾))
49 simp22r 1392 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑤 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)))
51 simp131 1407 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑝𝑞)
52 simp132 1408 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
5336, 38, 393brtr3d 4840 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
54 simp111 1401 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ HL)
5554hllatd 35320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ Lat)
5620, 27, 29hlatjcl 35323 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5742, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5820, 29atbase 35245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
5943, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Base‘𝐾))
6020, 27latjcl 17317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ Lat ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6155, 57, 59, 60syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6220, 13, 27, 28, 29cvr1 35366 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6354, 61, 44, 62syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6453, 63mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
6513, 27, 294at2 35570 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6642, 46, 50, 51, 52, 64, 65syl33anc 1504 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6741, 66mpbid 223 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
6867, 39, 403eqtr4d 2809 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = 𝑌)
6936, 68breqtrd 4835 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶𝑌)
70693exp 1148 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)))
7170exp4a 422 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
72713expd 1462 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))
7372rexlimdv3a 3180 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
74733expib 1152 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))))
7574rexlimdvv 3184 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7675adantld 484 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7735, 76sylbid 231 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑃 → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7877imp31 408 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
7934, 78syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
8079rexlimdvv 3184 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → (∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8180rexlimdvva 3185 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8281adantld 484 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8333, 82sylbid 231 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
84833impia 1145 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))
8584rexlimdv 3177 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))
8685imp 395 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)
8731, 86syldan 585 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8817, 87syldan 585 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16130  lecple 16221  ltcplt 17207  joincjn 17210  Latclat 17311  ccvr 35218  Atomscatm 35219  HLchlt 35306  LPlanesclpl 35448  LVolsclvol 35449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-lat 17312  df-clat 17374  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307  df-llines 35454  df-lplanes 35455  df-lvols 35456
This theorem is referenced by:  lplncvrlvol  35572  lvolcmp  35573  2lplnm2N  35577  2lplnmj  35578
  Copyright terms: Public domain W3C validator