Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplncvrlvol2 Structured version   Visualization version   GIF version

Theorem lplncvrlvol2 36911
Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
lplncvrlvol2.l = (le‘𝐾)
lplncvrlvol2.c 𝐶 = ( ⋖ ‘𝐾)
lplncvrlvol2.p 𝑃 = (LPlanes‘𝐾)
lplncvrlvol2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lplncvrlvol2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)

Proof of Theorem lplncvrlvol2
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋 𝑌)
2 simpl1 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝐾 ∈ HL)
3 simpl3 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑌𝑉)
4 lplncvrlvol2.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
5 lplncvrlvol2.v . . . . . 6 𝑉 = (LVols‘𝐾)
64, 5lvolnelpln 36886 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑉) → ¬ 𝑌𝑃)
72, 3, 6syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → ¬ 𝑌𝑃)
8 simpl2 1189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑃)
9 eleq1 2877 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑃𝑌𝑃))
108, 9syl5ibcom 248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌𝑃))
1110necon3bd 3001 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (¬ 𝑌𝑃𝑋𝑌))
127, 11mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝑌)
13 lplncvrlvol2.l . . . . 5 = (le‘𝐾)
14 eqid 2798 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
1513, 14pltval 17562 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
1615adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
171, 12, 16mpbir2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋(lt‘𝐾)𝑌)
18 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝐾 ∈ HL)
19 simpl2 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝑃)
20 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 4lplnbase 36830 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2219, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 ∈ (Base‘𝐾))
23 simpl3 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌𝑉)
2420, 5lvolbase 36874 . . . . 5 (𝑌𝑉𝑌 ∈ (Base‘𝐾))
2523, 24syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑌 ∈ (Base‘𝐾))
26 simpr 488 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋(lt‘𝐾)𝑌)
27 eqid 2798 . . . . 5 (join‘𝐾) = (join‘𝐾)
28 lplncvrlvol2.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
29 eqid 2798 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3020, 13, 14, 27, 28, 29hlrelat3 36708 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3118, 22, 25, 26, 30syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))
3220, 13, 27, 29, 5islvol2 36876 . . . . . . . 8 (𝐾 ∈ HL → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
3332adantr 484 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))))
34 simpr 488 . . . . . . . . . . 11 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
3520, 13, 27, 29, 4islpln2 36832 . . . . . . . . . . . . 13 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)))))
36 simp3rl 1243 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶(𝑋(join‘𝐾)𝑠))
37 simp3rr 1244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) 𝑌)
38 simp133 1307 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
3938oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
40 simp23 1205 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
4137, 39, 403brtr3d 5061 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
42 simp11 1200 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)))
43 simp12 1201 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Atoms‘𝐾))
44 simp3l 1198 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑠 ∈ (Atoms‘𝐾))
45 simp21l 1287 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑡 ∈ (Atoms‘𝐾))
4643, 44, 453jca 1125 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)))
47 simp21r 1288 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑢 ∈ (Atoms‘𝐾))
48 simp22l 1289 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑣 ∈ (Atoms‘𝐾))
49 simp22r 1290 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑤 ∈ (Atoms‘𝐾))
5047, 48, 493jca 1125 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)))
51 simp131 1305 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑝𝑞)
52 simp132 1306 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑟 (𝑝(join‘𝐾)𝑞))
5336, 38, 393brtr3d 5061 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠))
54 simp111 1299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ HL)
5554hllatd 36660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝐾 ∈ Lat)
5620, 27, 29hlatjcl 36663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5742, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
5820, 29atbase 36585 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (Atoms‘𝐾) → 𝑟 ∈ (Base‘𝐾))
5943, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑟 ∈ (Base‘𝐾))
6020, 27latjcl 17653 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ Lat ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6155, 57, 59, 60syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾))
6220, 13, 27, 28, 29cvr1 36706 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6354, 61, 44, 62syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)𝐶(((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠)))
6453, 63mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))
6513, 27, 294at2 36910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ ¬ 𝑠 ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6642, 46, 50, 51, 52, 64, 65syl33anc 1382 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → ((((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) ↔ (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)))
6741, 66mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)(join‘𝐾)𝑠) = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))
6867, 39, 403eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → (𝑋(join‘𝐾)𝑠) = 𝑌)
6936, 68breqtrd 5056 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌))) → 𝑋𝐶𝑌)
70693exp 1116 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → ((𝑠 ∈ (Atoms‘𝐾) ∧ (𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)))
7170exp4a 435 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) ∧ (𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
72713expd 1350 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))
7372rexlimdv3a 3245 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
74733expib 1119 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))))))
7574rexlimdvv 3252 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7675adantld 494 . . . . . . . . . . . . 13 (𝐾 ∈ HL → ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑝𝑞 ∧ ¬ 𝑟 (𝑝(join‘𝐾)𝑞) ∧ 𝑋 = ((𝑝(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7735, 76sylbid 243 . . . . . . . . . . . 12 (𝐾 ∈ HL → (𝑋𝑃 → ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾)) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))))
7877imp31 421 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
7934, 78syl7 74 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → ((𝑣 ∈ (Atoms‘𝐾) ∧ 𝑤 ∈ (Atoms‘𝐾)) → (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))))
8079rexlimdvv 3252 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑃) ∧ (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾))) → (∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8180rexlimdvva 3253 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤)) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8281adantld 494 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)∃𝑤 ∈ (Atoms‘𝐾)((𝑡𝑢 ∧ ¬ 𝑣 (𝑡(join‘𝐾)𝑢) ∧ ¬ 𝑤 ((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)) ∧ 𝑌 = (((𝑡(join‘𝐾)𝑢)(join‘𝐾)𝑣)(join‘𝐾)𝑤))) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
8333, 82sylbid 243 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑌𝑉 → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))))
84833impia 1114 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (𝑠 ∈ (Atoms‘𝐾) → ((𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌)))
8584rexlimdv 3242 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) → (∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌) → 𝑋𝐶𝑌))
8685imp 410 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ ∃𝑠 ∈ (Atoms‘𝐾)(𝑋𝐶(𝑋(join‘𝐾)𝑠) ∧ (𝑋(join‘𝐾)𝑠) 𝑌)) → 𝑋𝐶𝑌)
8731, 86syldan 594 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋𝐶𝑌)
8817, 87syldan 594 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑉) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  ltcplt 17543  joincjn 17546  Latclat 17647  ccvr 36558  Atomscatm 36559  HLchlt 36646  LPlanesclpl 36788  LVolsclvol 36789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796
This theorem is referenced by:  lplncvrlvol  36912  lvolcmp  36913  2lplnm2N  36917  2lplnmj  36918
  Copyright terms: Public domain W3C validator