Step | Hyp | Ref
| Expression |
1 | | tsmsxp.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ TopGrp) |
2 | | tgptmd 23138 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
3 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ TopMnd) |
4 | 3 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝐺 ∈ TopMnd) |
5 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑢 ∈ (TopOpen‘𝐺)) |
6 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
7 | | tsmsxp.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐺) |
8 | 6, 7 | tmdtopon 23140 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ TopMnd →
(TopOpen‘𝐺) ∈
(TopOn‘𝐵)) |
9 | 4, 8 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
10 | | toponss 21984 |
. . . . . . . . . . 11
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘𝐵)
∧ 𝑢 ∈
(TopOpen‘𝐺)) →
𝑢 ⊆ 𝐵) |
11 | 9, 5, 10 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑢 ⊆ 𝐵) |
12 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝑢) |
13 | 11, 12 | sseldd 3918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝐵) |
14 | | tmdmnd 23134 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
15 | 4, 14 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → 𝐺 ∈ Mnd) |
16 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝐺) = (0g‘𝐺) |
17 | 7, 16 | mndidcl 18315 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
18 | 15, 17 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (0g‘𝐺) ∈ 𝐵) |
19 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
20 | 7, 19, 16 | mndrid 18321 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
21 | 15, 13, 20 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
22 | 21, 12 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ 𝑢) |
23 | 7, 6, 19 | tmdcn2 23148 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝐵 ∧ (0g‘𝐺) ∈ 𝐵 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) |
24 | 4, 5, 13, 18, 22, 23 | syl23anc 1375 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) |
25 | | r19.29 3183 |
. . . . . . . . 9
⊢
((∀𝑣 ∈
(TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢))) |
26 | | simp31 1207 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → 𝑥 ∈ 𝑣) |
27 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin)) |
28 | 27 | simplbi 497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶)) |
29 | 28 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶)) |
30 | | dmss 5800 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶)) |
32 | | dmxpss 6063 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom
(𝐴 × 𝐶) ⊆ 𝐴 |
33 | 31, 32 | sstrdi 3929 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ 𝐴) |
34 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin) |
35 | 34 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin) |
36 | | dmfi 9027 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ Fin → dom 𝑦 ∈ Fin) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin) |
38 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦 ⊆ 𝐴 ∧ dom 𝑦 ∈ Fin)) |
39 | 33, 37, 38 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
40 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(.g‘𝐺) = (.g‘𝐺) |
41 | | simpl11 1246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝜑) |
42 | | tsmsxp.g |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐺 ∈ CMnd) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝐺 ∈ CMnd) |
44 | 41, 3 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝐺 ∈ TopMnd) |
45 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
46 | 45 | elin2d 4129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝑏 ∈ Fin) |
47 | | simpl2r 1225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝑡 ∈ (TopOpen‘𝐺)) |
48 | 44, 14 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → 𝐺 ∈ Mnd) |
49 | 48, 17 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (0g‘𝐺) ∈ 𝐵) |
50 | | hashcl 13999 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 ∈ Fin →
(♯‘𝑏) ∈
ℕ0) |
51 | 46, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (♯‘𝑏) ∈
ℕ0) |
52 | 7, 40, 16 | mulgnn0z 18645 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ Mnd ∧
(♯‘𝑏) ∈
ℕ0) → ((♯‘𝑏)(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
53 | 48, 51, 52 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → ((♯‘𝑏)(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
54 | | simpl32 1253 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (0g‘𝐺) ∈ 𝑡) |
55 | 53, 54 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → ((♯‘𝑏)(.g‘𝐺)(0g‘𝐺)) ∈ 𝑡) |
56 | 6, 7, 40, 43, 44, 46, 47, 49, 55 | tmdgsum2 23155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) |
57 | | simp111 1300 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑) |
58 | 57, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd) |
59 | 57, 1 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp) |
60 | | tsmsxp.a |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
61 | 57, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴 ∈ 𝑉) |
62 | | tsmsxp.c |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
63 | 57, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶 ∈ 𝑊) |
64 | | tsmsxp.f |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
65 | 57, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
66 | | tsmsxp.h |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
67 | 57, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴⟶𝐵) |
68 | | tsmsxp.1 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
69 | 57, 68 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
70 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(-g‘𝐺) = (-g‘𝐺) |
71 | | simp3l 1199 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺)) |
72 | | simp3rl 1244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g‘𝐺) ∈ 𝑠) |
73 | | simp2rl 1240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
74 | | simp2rr 1241 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦 ⊆ 𝑏) |
75 | | simp2ll 1238 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
76 | 7, 58, 59, 61, 63, 65, 67, 69, 6, 16, 19, 70, 71, 72, 73, 74, 75 | tsmsxplem1 23212 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) |
77 | 43 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd) |
78 | 59 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp) |
79 | 61 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴 ∈ 𝑉) |
80 | 63 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶 ∈ 𝑊) |
81 | 65 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
82 | 67 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴⟶𝐵) |
83 | 41 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑) |
84 | 83, 68 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
85 | | simp3ll 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺)) |
86 | 72 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g‘𝐺) ∈ 𝑠) |
87 | | simp2rl 1240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) |
88 | | simp133 1308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) |
89 | | simp3rl 1244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) |
90 | | simp2ll 1238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
91 | | simp2rr 1241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦 ⊆ 𝑏) |
92 | | simp3rr 1245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) |
93 | 92 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦 ⊆ 𝑛) |
94 | | relxp 5598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ Rel
(𝐴 × 𝐶) |
95 | | relss 5682 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦)) |
96 | 28, 94, 95 | mpisyl 21 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦) |
97 | | relssdmrn 6161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (Rel
𝑦 → 𝑦 ⊆ (dom 𝑦 × ran 𝑦)) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦)) |
99 | | xpss12 5595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((dom
𝑦 ⊆ 𝑏 ∧ ran 𝑦 ⊆ 𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛)) |
100 | 98, 99 | sylan9ss 3930 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦 ⊆ 𝑏 ∧ ran 𝑦 ⊆ 𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛)) |
101 | 90, 91, 93, 100 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛)) |
102 | 92 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠) |
103 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑏 × 𝑛) → (𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ (𝑏 × 𝑛))) |
104 | | reseq2 5875 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑏 × 𝑛) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (𝑏 × 𝑛))) |
105 | 104 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ 𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛)))) |
106 | 105 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)) |
107 | 103, 106 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑏 × 𝑛) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))) |
108 | | simp2lr 1239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) |
109 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑏 ∈ Fin)) |
110 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛 ⊆ 𝐶 ∧ 𝑛 ∈ Fin)) |
111 | | xpss12 5595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝑛 ⊆ 𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶)) |
112 | | xpfi 9015 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin) |
113 | 111, 112 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑏 ⊆ 𝐴 ∧ 𝑛 ⊆ 𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
114 | 113 | an4s 656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑏 ⊆ 𝐴 ∧ 𝑏 ∈ Fin) ∧ (𝑛 ⊆ 𝐶 ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
115 | 109, 110,
114 | syl2anb 597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
116 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin)) |
117 | 115, 116 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
118 | 87, 89, 117 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
119 | 107, 108,
118 | rspcdva 3554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)) |
120 | 101, 119 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣) |
121 | | simp3lr 1243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) |
122 | 121 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡) |
123 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑔 = ℎ → (𝐺 Σg 𝑔) = (𝐺 Σg ℎ)) |
124 | 123 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑔 = ℎ → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ℎ) ∈ 𝑡)) |
125 | 124 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑔 ∈
(𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ℎ ∈ (𝑠 ↑m 𝑏)(𝐺 Σg ℎ) ∈ 𝑡) |
126 | 122, 125 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ℎ ∈ (𝑠 ↑m 𝑏)(𝐺 Σg ℎ) ∈ 𝑡) |
127 | 7, 77, 78, 79, 80, 81, 82, 84, 6, 16, 19, 70, 85, 86, 87, 88, 89, 101, 102, 120, 126 | tsmsxplem2 23213 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
128 | 127 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
129 | 128 | exp4a 431 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
130 | 129 | 3imp1 1345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝑏 ((𝐻‘𝑥)(-g‘𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
131 | 76, 130 | rexlimddv 3219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
132 | 131 | 3expa 1116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠 ↑m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
133 | 56, 132 | rexlimddv 3219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏))) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
134 | 133 | anassrs 467 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦 ⊆ 𝑏)) → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢) |
135 | 134 | expr 456 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
136 | 135 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
137 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = dom 𝑦 → (𝑎 ⊆ 𝑏 ↔ dom 𝑦 ⊆ 𝑏)) |
138 | 137 | rspceaimv 3557 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
139 | 39, 136, 138 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)) |
140 | 139 | rexlimdvaa 3213 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
141 | 26, 140 | embantd 59 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
142 | 141 | 3expia 1119 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
143 | 142 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
144 | 143 | rexlimdva 3212 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
145 | 144 | impcomd 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
146 | 145 | rexlimdva 3212 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
147 | 25, 146 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 ∧ (0g‘𝐺) ∈ 𝑡 ∧ ∀𝑐 ∈ 𝑣 ∀𝑑 ∈ 𝑡 (𝑐(+g‘𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
148 | 24, 147 | mpan2d 690 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥 ∈ 𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))) |
149 | 148 | 3expia 1119 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑥 ∈ 𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
150 | 149 | com23 86 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → (𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
151 | 150 | ralrimdva 3112 |
. . . 4
⊢ (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢)))) |
152 | 151 | anim2d 611 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))) → (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))))) |
153 | | eqid 2738 |
. . . 4
⊢
(𝒫 (𝐴
× 𝐶) ∩ Fin) =
(𝒫 (𝐴 × 𝐶) ∩ Fin) |
154 | | tgptps 23139 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
155 | 1, 154 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) |
156 | 60, 62 | xpexd 7579 |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
157 | 7, 6, 153, 42, 155, 156, 64 | eltsms 23192 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑣))))) |
158 | | eqid 2738 |
. . . 4
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
159 | 7, 6, 158, 42, 155, 60, 66 | eltsms 23192 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg (𝐻 ↾ 𝑏)) ∈ 𝑢))))) |
160 | 152, 157,
159 | 3imtr4d 293 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻))) |
161 | 160 | ssrdv 3923 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻)) |