MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxp Structured version   Visualization version   GIF version

Theorem tsmsxp 23214
Description: Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19492 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 23212 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
Assertion
Ref Expression
tsmsxp (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Distinct variable groups:   𝑗,𝑘,𝐺   𝐵,𝑘   𝐴,𝑗,𝑘   𝑗,𝐻,𝑘   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem tsmsxp
Dummy variables 𝑔 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopGrp)
2 tgptmd 23138 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
433ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ TopMnd)
5 simp2 1135 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢 ∈ (TopOpen‘𝐺))
6 eqid 2738 . . . . . . . . . . . . 13 (TopOpen‘𝐺) = (TopOpen‘𝐺)
7 tsmsxp.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
86, 7tmdtopon 23140 . . . . . . . . . . . 12 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
94, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
10 toponss 21984 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → 𝑢𝐵)
119, 5, 10syl2anc 583 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢𝐵)
12 simp3 1136 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝑢)
1311, 12sseldd 3918 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝐵)
14 tmdmnd 23134 . . . . . . . . . . 11 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
154, 14syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ Mnd)
16 eqid 2738 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
177, 16mndidcl 18315 . . . . . . . . . 10 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (0g𝐺) ∈ 𝐵)
19 eqid 2738 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
207, 19, 16mndrid 18321 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2115, 13, 20syl2anc 583 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2221, 12eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)
237, 6, 19tmdcn2 23148 . . . . . . . . 9 (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
244, 5, 13, 18, 22, 23syl23anc 1375 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
25 r19.29 3183 . . . . . . . . 9 ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)))
26 simp31 1207 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → 𝑥𝑣)
27 elfpw 9051 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin))
2827simplbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶))
2928ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶))
30 dmss 5800 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
3129, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
32 dmxpss 6063 . . . . . . . . . . . . . . . . . . 19 dom (𝐴 × 𝐶) ⊆ 𝐴
3331, 32sstrdi 3929 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦𝐴)
34 elinel2 4126 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin)
3534ad2antrl 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin)
36 dmfi 9027 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ Fin → dom 𝑦 ∈ Fin)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin)
38 elfpw 9051 . . . . . . . . . . . . . . . . . 18 (dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦𝐴 ∧ dom 𝑦 ∈ Fin))
3933, 37, 38sylanbrc 582 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
40 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (.g𝐺) = (.g𝐺)
41 simpl11 1246 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝜑)
42 tsmsxp.g . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ CMnd)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ CMnd)
4441, 3syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ TopMnd)
45 simprrl 777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
4645elin2d 4129 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ Fin)
47 simpl2r 1225 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑡 ∈ (TopOpen‘𝐺))
4844, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ Mnd)
4948, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝐵)
50 hashcl 13999 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
5146, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (♯‘𝑏) ∈ ℕ0)
527, 40, 16mulgnn0z 18645 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Mnd ∧ (♯‘𝑏) ∈ ℕ0) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
5348, 51, 52syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
54 simpl32 1253 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝑡)
5553, 54eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) ∈ 𝑡)
566, 7, 40, 43, 44, 46, 47, 49, 55tmdgsum2 23155 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
57 simp111 1300 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑)
5857, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd)
5957, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp)
60 tsmsxp.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴𝑉)
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴𝑉)
62 tsmsxp.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶𝑊)
6357, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶𝑊)
64 tsmsxp.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
6557, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
66 tsmsxp.h . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:𝐴𝐵)
6757, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴𝐵)
68 tsmsxp.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
6957, 68sylan 579 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
70 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (-g𝐺) = (-g𝐺)
71 simp3l 1199 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺))
72 simp3rl 1244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g𝐺) ∈ 𝑠)
73 simp2rl 1240 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
74 simp2rr 1241 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦𝑏)
75 simp2ll 1238 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
767, 58, 59, 61, 63, 65, 67, 69, 6, 16, 19, 70, 71, 72, 73, 74, 75tsmsxplem1 23212 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
77433adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd)
78593adant3r 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp)
79613adant3r 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴𝑉)
80633adant3r 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶𝑊)
81653adant3r 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
82673adant3r 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴𝐵)
83413adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑)
8483, 68sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
85 simp3ll 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺))
86723adant3r 1179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g𝐺) ∈ 𝑠)
87 simp2rl 1240 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
88 simp133 1308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)
89 simp3rl 1244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin))
90 simp2ll 1238 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
91 simp2rr 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦𝑏)
92 simp3rr 1245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
9392simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦𝑛)
94 relxp 5598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐴 × 𝐶)
95 relss 5682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦))
9628, 94, 95mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦)
97 relssdmrn 6161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑦𝑦 ⊆ (dom 𝑦 × ran 𝑦))
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦))
99 xpss12 5595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((dom 𝑦𝑏 ∧ ran 𝑦𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛))
10098, 99sylan9ss 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦𝑏 ∧ ran 𝑦𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛))
10190, 91, 93, 100syl12anc 833 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛))
10292simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)
103 sseq2 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → (𝑦𝑧𝑦 ⊆ (𝑏 × 𝑛)))
104 reseq2 5875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑏 × 𝑛) → (𝐹𝑧) = (𝐹 ↾ (𝑏 × 𝑛)))
105104oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))))
106105eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
107103, 106imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑏 × 𝑛) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)))
108 simp2lr 1239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))
109 elfpw 9051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏𝐴𝑏 ∈ Fin))
110 elfpw 9051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛𝐶𝑛 ∈ Fin))
111 xpss12 5595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏𝐴𝑛𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶))
112 xpfi 9015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin)
113111, 112anim12i 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏𝐴𝑛𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
114113an4s 656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏𝐴𝑏 ∈ Fin) ∧ (𝑛𝐶𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
115109, 110, 114syl2anb 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
116 elfpw 9051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
117115, 116sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
11887, 89, 117syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
119107, 108, 118rspcdva 3554 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
120101, 119mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)
121 simp3lr 1243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
122121simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)
123 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔 = → (𝐺 Σg 𝑔) = (𝐺 Σg ))
124123eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑔 = → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ) ∈ 𝑡))
125124cbvralvw 3372 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
126122, 125sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
1277, 77, 78, 79, 80, 81, 82, 84, 6, 16, 19, 70, 85, 86, 87, 88, 89, 101, 102, 120, 126tsmsxplem2 23213 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1281273exp 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
129128exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
1301293imp1 1345 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13176, 130rexlimddv 3219 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1321313expa 1116 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13356, 132rexlimddv 3219 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
134133anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
135134expr 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
136135ralrimiva 3107 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
137 sseq1 3942 . . . . . . . . . . . . . . . . . 18 (𝑎 = dom 𝑦 → (𝑎𝑏 ↔ dom 𝑦𝑏))
138137rspceaimv 3557 . . . . . . . . . . . . . . . . 17 ((dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
13939, 136, 138syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
140139rexlimdvaa 3213 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14126, 140embantd 59 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1421413expia 1119 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
143142anassrs 467 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
144143rexlimdva 3212 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
145144impcomd 411 . . . . . . . . . 10 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
146145rexlimdva 3212 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14725, 146syl5 34 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14824, 147mpan2d 690 . . . . . . 7 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1491483expia 1119 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (𝑥𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
150149com23 86 . . . . 5 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
151150ralrimdva 3112 . . . 4 (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
152151anim2d 611 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
153 eqid 2738 . . . 4 (𝒫 (𝐴 × 𝐶) ∩ Fin) = (𝒫 (𝐴 × 𝐶) ∩ Fin)
154 tgptps 23139 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
1551, 154syl 17 . . . 4 (𝜑𝐺 ∈ TopSp)
15660, 62xpexd 7579 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ V)
1577, 6, 153, 42, 155, 156, 64eltsms 23192 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)))))
158 eqid 2738 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
1597, 6, 158, 42, 155, 60, 66eltsms 23192 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
160152, 157, 1593imtr4d 293 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻)))
161160ssrdv 3923 1 (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  0cn0 12163  chash 13972  Basecbs 16840  +gcplusg 16888  TopOpenctopn 17049  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  -gcsg 18494  .gcmg 18615  CMndccmn 19301  TopOnctopon 21967  TopSpctps 21989  TopMndctmd 23129  TopGrpctgp 23130   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-rest 17050  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-mre 17212  df-mrc 17213  df-acs 17215  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-xko 22622  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator