MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxp Structured version   Visualization version   GIF version

Theorem tsmsxp 22760
Description: Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19089 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 22758 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
Assertion
Ref Expression
tsmsxp (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Distinct variable groups:   𝑗,𝑘,𝐺   𝐵,𝑘   𝐴,𝑗,𝑘   𝑗,𝐻,𝑘   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem tsmsxp
Dummy variables 𝑔 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopGrp)
2 tgptmd 22684 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
433ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ TopMnd)
5 simp2 1134 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢 ∈ (TopOpen‘𝐺))
6 eqid 2798 . . . . . . . . . . . . 13 (TopOpen‘𝐺) = (TopOpen‘𝐺)
7 tsmsxp.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
86, 7tmdtopon 22686 . . . . . . . . . . . 12 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
94, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
10 toponss 21532 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → 𝑢𝐵)
119, 5, 10syl2anc 587 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢𝐵)
12 simp3 1135 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝑢)
1311, 12sseldd 3916 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝐵)
14 tmdmnd 22680 . . . . . . . . . . 11 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
154, 14syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ Mnd)
16 eqid 2798 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
177, 16mndidcl 17918 . . . . . . . . . 10 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (0g𝐺) ∈ 𝐵)
19 eqid 2798 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
207, 19, 16mndrid 17924 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2115, 13, 20syl2anc 587 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2221, 12eqeltrd 2890 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)
237, 6, 19tmdcn2 22694 . . . . . . . . 9 (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
244, 5, 13, 18, 22, 23syl23anc 1374 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
25 r19.29 3216 . . . . . . . . 9 ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)))
26 simp31 1206 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → 𝑥𝑣)
27 elfpw 8810 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin))
2827simplbi 501 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶))
2928ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶))
30 dmss 5735 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
3129, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
32 dmxpss 5995 . . . . . . . . . . . . . . . . . . 19 dom (𝐴 × 𝐶) ⊆ 𝐴
3331, 32sstrdi 3927 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦𝐴)
34 elinel2 4123 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin)
3534ad2antrl 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin)
36 dmfi 8786 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ Fin → dom 𝑦 ∈ Fin)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin)
38 elfpw 8810 . . . . . . . . . . . . . . . . . 18 (dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦𝐴 ∧ dom 𝑦 ∈ Fin))
3933, 37, 38sylanbrc 586 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
40 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (.g𝐺) = (.g𝐺)
41 simpl11 1245 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝜑)
42 tsmsxp.g . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ CMnd)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ CMnd)
4441, 3syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ TopMnd)
45 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
4645elin2d 4126 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ Fin)
47 simpl2r 1224 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑡 ∈ (TopOpen‘𝐺))
4844, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ Mnd)
4948, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝐵)
50 hashcl 13713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
5146, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (♯‘𝑏) ∈ ℕ0)
527, 40, 16mulgnn0z 18246 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Mnd ∧ (♯‘𝑏) ∈ ℕ0) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
5348, 51, 52syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
54 simpl32 1252 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝑡)
5553, 54eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) ∈ 𝑡)
566, 7, 40, 43, 44, 46, 47, 49, 55tmdgsum2 22701 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
57 simp111 1299 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑)
5857, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd)
5957, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp)
60 tsmsxp.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴𝑉)
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴𝑉)
62 tsmsxp.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶𝑊)
6357, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶𝑊)
64 tsmsxp.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
6557, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
66 tsmsxp.h . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:𝐴𝐵)
6757, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴𝐵)
68 tsmsxp.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
6957, 68sylan 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
70 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . 24 (-g𝐺) = (-g𝐺)
71 simp3l 1198 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺))
72 simp3rl 1243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g𝐺) ∈ 𝑠)
73 simp2rl 1239 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
74 simp2rr 1240 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦𝑏)
75 simp2ll 1237 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
767, 58, 59, 61, 63, 65, 67, 69, 6, 16, 19, 70, 71, 72, 73, 74, 75tsmsxplem1 22758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
77433adant3 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd)
78593adant3r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp)
79613adant3r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴𝑉)
80633adant3r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶𝑊)
81653adant3r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
82673adant3r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴𝐵)
83413adant3 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑)
8483, 68sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
85 simp3ll 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺))
86723adant3r 1178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g𝐺) ∈ 𝑠)
87 simp2rl 1239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
88 simp133 1307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)
89 simp3rl 1243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin))
90 simp2ll 1237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
91 simp2rr 1240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦𝑏)
92 simp3rr 1244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
9392simpld 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦𝑛)
94 relxp 5537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐴 × 𝐶)
95 relss 5620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦))
9628, 94, 95mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦)
97 relssdmrn 6088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑦𝑦 ⊆ (dom 𝑦 × ran 𝑦))
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦))
99 xpss12 5534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((dom 𝑦𝑏 ∧ ran 𝑦𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛))
10098, 99sylan9ss 3928 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦𝑏 ∧ ran 𝑦𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛))
10190, 91, 93, 100syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛))
10292simprd 499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)
103 sseq2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → (𝑦𝑧𝑦 ⊆ (𝑏 × 𝑛)))
104 reseq2 5813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑏 × 𝑛) → (𝐹𝑧) = (𝐹 ↾ (𝑏 × 𝑛)))
105104oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))))
106105eleq1d 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
107103, 106imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑏 × 𝑛) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)))
108 simp2lr 1238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))
109 elfpw 8810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏𝐴𝑏 ∈ Fin))
110 elfpw 8810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛𝐶𝑛 ∈ Fin))
111 xpss12 5534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏𝐴𝑛𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶))
112 xpfi 8773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin)
113111, 112anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏𝐴𝑛𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
114113an4s 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏𝐴𝑏 ∈ Fin) ∧ (𝑛𝐶𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
115109, 110, 114syl2anb 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
116 elfpw 8810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
117115, 116sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
11887, 89, 117syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
119107, 108, 118rspcdva 3573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
120101, 119mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)
121 simp3lr 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
122121simprd 499 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)
123 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔 = → (𝐺 Σg 𝑔) = (𝐺 Σg ))
124123eleq1d 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑔 = → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ) ∈ 𝑡))
125124cbvralvw 3396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
126122, 125sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
1277, 77, 78, 79, 80, 81, 82, 84, 6, 16, 19, 70, 85, 86, 87, 88, 89, 101, 102, 120, 126tsmsxplem2 22759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1281273exp 1116 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
129128exp4a 435 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
1301293imp1 1344 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13176, 130rexlimddv 3250 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1321313expa 1115 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13356, 132rexlimddv 3250 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
134133anassrs 471 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
135134expr 460 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
136135ralrimiva 3149 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
137 sseq1 3940 . . . . . . . . . . . . . . . . . 18 (𝑎 = dom 𝑦 → (𝑎𝑏 ↔ dom 𝑦𝑏))
138137rspceaimv 3576 . . . . . . . . . . . . . . . . 17 ((dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
13939, 136, 138syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
140139rexlimdvaa 3244 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14126, 140embantd 59 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1421413expia 1118 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
143142anassrs 471 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
144143rexlimdva 3243 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
145144impcomd 415 . . . . . . . . . 10 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
146145rexlimdva 3243 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14725, 146syl5 34 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14824, 147mpan2d 693 . . . . . . 7 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1491483expia 1118 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (𝑥𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
150149com23 86 . . . . 5 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
151150ralrimdva 3154 . . . 4 (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
152151anim2d 614 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
153 eqid 2798 . . . 4 (𝒫 (𝐴 × 𝐶) ∩ Fin) = (𝒫 (𝐴 × 𝐶) ∩ Fin)
154 tgptps 22685 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
1551, 154syl 17 . . . 4 (𝜑𝐺 ∈ TopSp)
15660, 62xpexd 7454 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ V)
1577, 6, 153, 42, 155, 156, 64eltsms 22738 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)))))
158 eqid 2798 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
1597, 6, 158, 42, 155, 60, 66eltsms 22738 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
160152, 157, 1593imtr4d 297 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻)))
161160ssrdv 3921 1 (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  cres 5521  Rel wrel 5524  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  0cn0 11885  chash 13686  Basecbs 16475  +gcplusg 16557  TopOpenctopn 16687  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  -gcsg 18097  .gcmg 18216  CMndccmn 18898  TopOnctopon 21515  TopSpctps 21537  TopMndctmd 22675  TopGrpctgp 22676   tsums ctsu 22731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-rest 16688  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-mre 16849  df-mrc 16850  df-acs 16852  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-ntr 21625  df-nei 21703  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-xko 22168  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tmd 22677  df-tgp 22678  df-tsms 22732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator