MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxp Structured version   Visualization version   GIF version

Theorem tsmsxp 24049
Description: Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19913 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 24047 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
Assertion
Ref Expression
tsmsxp (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Distinct variable groups:   𝑗,𝑘,𝐺   𝐵,𝑘   𝐴,𝑗,𝑘   𝑗,𝐻,𝑘   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem tsmsxp
Dummy variables 𝑔 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopGrp)
2 tgptmd 23973 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
433ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ TopMnd)
5 simp2 1137 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢 ∈ (TopOpen‘𝐺))
6 eqid 2730 . . . . . . . . . . . . 13 (TopOpen‘𝐺) = (TopOpen‘𝐺)
7 tsmsxp.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
86, 7tmdtopon 23975 . . . . . . . . . . . 12 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
94, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
10 toponss 22821 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → 𝑢𝐵)
119, 5, 10syl2anc 584 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢𝐵)
12 simp3 1138 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝑢)
1311, 12sseldd 3950 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝐵)
14 tmdmnd 23969 . . . . . . . . . . 11 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
154, 14syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ Mnd)
16 eqid 2730 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
177, 16mndidcl 18683 . . . . . . . . . 10 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (0g𝐺) ∈ 𝐵)
19 eqid 2730 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
207, 19, 16mndrid 18689 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2115, 13, 20syl2anc 584 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2221, 12eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)
237, 6, 19tmdcn2 23983 . . . . . . . . 9 (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
244, 5, 13, 18, 22, 23syl23anc 1379 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
25 r19.29 3095 . . . . . . . . 9 ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)))
26 simp31 1210 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → 𝑥𝑣)
27 elfpw 9312 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin))
2827simplbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶))
2928ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶))
30 dmss 5869 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
3129, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
32 dmxpss 6147 . . . . . . . . . . . . . . . . . . 19 dom (𝐴 × 𝐶) ⊆ 𝐴
3331, 32sstrdi 3962 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦𝐴)
34 elinel2 4168 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin)
3534ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin)
36 dmfi 9293 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ Fin → dom 𝑦 ∈ Fin)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin)
38 elfpw 9312 . . . . . . . . . . . . . . . . . 18 (dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦𝐴 ∧ dom 𝑦 ∈ Fin))
3933, 37, 38sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
40 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (.g𝐺) = (.g𝐺)
41 simpl11 1249 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝜑)
42 tsmsxp.g . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ CMnd)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ CMnd)
4441, 3syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ TopMnd)
45 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
4645elin2d 4171 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ Fin)
47 simpl2r 1228 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑡 ∈ (TopOpen‘𝐺))
4844, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ Mnd)
4948, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝐵)
50 hashcl 14328 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
5146, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (♯‘𝑏) ∈ ℕ0)
527, 40, 16mulgnn0z 19040 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Mnd ∧ (♯‘𝑏) ∈ ℕ0) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
5348, 51, 52syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
54 simpl32 1256 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝑡)
5553, 54eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) ∈ 𝑡)
566, 7, 40, 43, 44, 46, 47, 49, 55tmdgsum2 23990 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
57 simp111 1303 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑)
5857, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd)
5957, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp)
60 tsmsxp.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴𝑉)
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴𝑉)
62 tsmsxp.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶𝑊)
6357, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶𝑊)
64 tsmsxp.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
6557, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
66 tsmsxp.h . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:𝐴𝐵)
6757, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴𝐵)
68 tsmsxp.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
6957, 68sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
70 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (-g𝐺) = (-g𝐺)
71 simp3l 1202 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺))
72 simp3rl 1247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g𝐺) ∈ 𝑠)
73 simp2rl 1243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
74 simp2rr 1244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦𝑏)
75 simp2ll 1241 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
767, 58, 59, 61, 63, 65, 67, 69, 6, 16, 19, 70, 71, 72, 73, 74, 75tsmsxplem1 24047 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
77433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd)
78593adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp)
79613adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴𝑉)
80633adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶𝑊)
81653adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
82673adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴𝐵)
83413adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑)
8483, 68sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
85 simp3ll 1245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺))
86723adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g𝐺) ∈ 𝑠)
87 simp2rl 1243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
88 simp133 1311 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)
89 simp3rl 1247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin))
90 simp2ll 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
91 simp2rr 1244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦𝑏)
92 simp3rr 1248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
9392simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦𝑛)
94 relxp 5659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐴 × 𝐶)
95 relss 5747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦))
9628, 94, 95mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦)
97 relssdmrn 6244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑦𝑦 ⊆ (dom 𝑦 × ran 𝑦))
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦))
99 xpss12 5656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((dom 𝑦𝑏 ∧ ran 𝑦𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛))
10098, 99sylan9ss 3963 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦𝑏 ∧ ran 𝑦𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛))
10190, 91, 93, 100syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛))
10292simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)
103 sseq2 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → (𝑦𝑧𝑦 ⊆ (𝑏 × 𝑛)))
104 reseq2 5948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑏 × 𝑛) → (𝐹𝑧) = (𝐹 ↾ (𝑏 × 𝑛)))
105104oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))))
106105eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
107103, 106imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑏 × 𝑛) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)))
108 simp2lr 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))
109 elfpw 9312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏𝐴𝑏 ∈ Fin))
110 elfpw 9312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛𝐶𝑛 ∈ Fin))
111 xpss12 5656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏𝐴𝑛𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶))
112 xpfi 9276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin)
113111, 112anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏𝐴𝑛𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
114113an4s 660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏𝐴𝑏 ∈ Fin) ∧ (𝑛𝐶𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
115109, 110, 114syl2anb 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
116 elfpw 9312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
117115, 116sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
11887, 89, 117syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
119107, 108, 118rspcdva 3592 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
120101, 119mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)
121 simp3lr 1246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
122121simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)
123 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔 = → (𝐺 Σg 𝑔) = (𝐺 Σg ))
124123eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑔 = → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ) ∈ 𝑡))
125124cbvralvw 3216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
126122, 125sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
1277, 77, 78, 79, 80, 81, 82, 84, 6, 16, 19, 70, 85, 86, 87, 88, 89, 101, 102, 120, 126tsmsxplem2 24048 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1281273exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
129128exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
1301293imp1 1348 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13176, 130rexlimddv 3141 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1321313expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13356, 132rexlimddv 3141 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
134133anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
135134expr 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
136135ralrimiva 3126 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
137 sseq1 3975 . . . . . . . . . . . . . . . . . 18 (𝑎 = dom 𝑦 → (𝑎𝑏 ↔ dom 𝑦𝑏))
138137rspceaimv 3597 . . . . . . . . . . . . . . . . 17 ((dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
13939, 136, 138syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
140139rexlimdvaa 3136 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14126, 140embantd 59 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1421413expia 1121 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
143142anassrs 467 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
144143rexlimdva 3135 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
145144impcomd 411 . . . . . . . . . 10 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
146145rexlimdva 3135 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14725, 146syl5 34 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14824, 147mpan2d 694 . . . . . . 7 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1491483expia 1121 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (𝑥𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
150149com23 86 . . . . 5 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
151150ralrimdva 3134 . . . 4 (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
152151anim2d 612 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
153 eqid 2730 . . . 4 (𝒫 (𝐴 × 𝐶) ∩ Fin) = (𝒫 (𝐴 × 𝐶) ∩ Fin)
154 tgptps 23974 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
1551, 154syl 17 . . . 4 (𝜑𝐺 ∈ TopSp)
15660, 62xpexd 7730 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ V)
1577, 6, 153, 42, 155, 156, 64eltsms 24027 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)))))
158 eqid 2730 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
1597, 6, 158, 42, 155, 60, 66eltsms 24027 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
160152, 157, 1593imtr4d 294 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻)))
161160ssrdv 3955 1 (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  0cn0 12449  chash 14302  Basecbs 17186  +gcplusg 17227  TopOpenctopn 17391  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  -gcsg 18874  .gcmg 19006  CMndccmn 19717  TopOnctopon 22804  TopSpctps 22826  TopMndctmd 23964  TopGrpctgp 23965   tsums ctsu 24020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-rest 17392  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-mre 17554  df-mrc 17555  df-acs 17557  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-nei 22992  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-xko 23457  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator