MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxp Structured version   Visualization version   GIF version

Theorem tsmsxp 22456
Description: Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 18839 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 22454 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
Assertion
Ref Expression
tsmsxp (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Distinct variable groups:   𝑗,𝑘,𝐺   𝐵,𝑘   𝐴,𝑗,𝑘   𝑗,𝐻,𝑘   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem tsmsxp
Dummy variables 𝑔 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopGrp)
2 tgptmd 22381 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
433ad2ant1 1113 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ TopMnd)
5 simp2 1117 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢 ∈ (TopOpen‘𝐺))
6 eqid 2772 . . . . . . . . . . . . 13 (TopOpen‘𝐺) = (TopOpen‘𝐺)
7 tsmsxp.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
86, 7tmdtopon 22383 . . . . . . . . . . . 12 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
94, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
10 toponss 21229 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → 𝑢𝐵)
119, 5, 10syl2anc 576 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢𝐵)
12 simp3 1118 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝑢)
1311, 12sseldd 3855 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝐵)
14 tmdmnd 22377 . . . . . . . . . . 11 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
154, 14syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ Mnd)
16 eqid 2772 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
177, 16mndidcl 17766 . . . . . . . . . 10 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (0g𝐺) ∈ 𝐵)
19 eqid 2772 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
207, 19, 16mndrid 17770 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2115, 13, 20syl2anc 576 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2221, 12eqeltrd 2860 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)
237, 6, 19tmdcn2 22391 . . . . . . . . 9 (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
244, 5, 13, 18, 22, 23syl23anc 1357 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
25 r19.29 3194 . . . . . . . . 9 ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)))
26 simp31 1189 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → 𝑥𝑣)
27 elfpw 8613 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin))
2827simplbi 490 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶))
2928ad2antrl 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶))
30 dmss 5614 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
3129, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
32 dmxpss 5862 . . . . . . . . . . . . . . . . . . 19 dom (𝐴 × 𝐶) ⊆ 𝐴
3331, 32syl6ss 3866 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦𝐴)
34 elinel2 4057 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin)
3534ad2antrl 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin)
36 dmfi 8589 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ Fin → dom 𝑦 ∈ Fin)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin)
38 elfpw 8613 . . . . . . . . . . . . . . . . . 18 (dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦𝐴 ∧ dom 𝑦 ∈ Fin))
3933, 37, 38sylanbrc 575 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
40 eqid 2772 . . . . . . . . . . . . . . . . . . . . . 22 (.g𝐺) = (.g𝐺)
41 simpl11 1228 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝜑)
42 tsmsxp.g . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ CMnd)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ CMnd)
4441, 3syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ TopMnd)
45 simprrl 768 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
4645elin2d 4060 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ Fin)
47 simpl2r 1207 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑡 ∈ (TopOpen‘𝐺))
4844, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ Mnd)
4948, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝐵)
50 hashcl 13525 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
5146, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (♯‘𝑏) ∈ ℕ0)
527, 40, 16mulgnn0z 18028 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Mnd ∧ (♯‘𝑏) ∈ ℕ0) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
5348, 51, 52syl2anc 576 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
54 simpl32 1235 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝑡)
5553, 54eqeltrd 2860 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) ∈ 𝑡)
566, 7, 40, 43, 44, 46, 47, 49, 55tmdgsum2 22398 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
57 simp111 1282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑)
5857, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd)
5957, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp)
60 tsmsxp.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴𝑉)
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴𝑉)
62 tsmsxp.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶𝑊)
6357, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶𝑊)
64 tsmsxp.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
6557, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
66 tsmsxp.h . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:𝐴𝐵)
6757, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴𝐵)
68 tsmsxp.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
6957, 68sylan 572 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
70 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . 24 (-g𝐺) = (-g𝐺)
71 simp3l 1181 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺))
72 simp3rl 1226 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g𝐺) ∈ 𝑠)
73 simp2rl 1222 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
74 simp2rr 1223 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦𝑏)
75 simp2ll 1220 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
767, 58, 59, 61, 63, 65, 67, 69, 6, 16, 19, 70, 71, 72, 73, 74, 75tsmsxplem1 22454 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
77433adant3 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd)
78593adant3r 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp)
79613adant3r 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴𝑉)
80633adant3r 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶𝑊)
81653adant3r 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
82673adant3r 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴𝐵)
83413adant3 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑)
8483, 68sylan 572 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
85 simp3ll 1224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺))
86723adant3r 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g𝐺) ∈ 𝑠)
87 simp2rl 1222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
88 simp133 1290 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)
89 simp3rl 1226 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin))
90 simp2ll 1220 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
91 simp2rr 1223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦𝑏)
92 simp3rr 1227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
9392simpld 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦𝑛)
94 relxp 5418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐴 × 𝐶)
95 relss 5499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦))
9628, 94, 95mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦)
97 relssdmrn 5953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑦𝑦 ⊆ (dom 𝑦 × ran 𝑦))
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦))
99 xpss12 5415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((dom 𝑦𝑏 ∧ ran 𝑦𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛))
10098, 99sylan9ss 3867 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦𝑏 ∧ ran 𝑦𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛))
10190, 91, 93, 100syl12anc 824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛))
10292simprd 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)
103 sseq2 3879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → (𝑦𝑧𝑦 ⊆ (𝑏 × 𝑛)))
104 reseq2 5683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑏 × 𝑛) → (𝐹𝑧) = (𝐹 ↾ (𝑏 × 𝑛)))
105104oveq2d 6986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))))
106105eleq1d 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
107103, 106imbi12d 337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑏 × 𝑛) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)))
108 simp2lr 1221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))
109 elfpw 8613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏𝐴𝑏 ∈ Fin))
110 elfpw 8613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛𝐶𝑛 ∈ Fin))
111 xpss12 5415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏𝐴𝑛𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶))
112 xpfi 8576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin)
113111, 112anim12i 603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏𝐴𝑛𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
114113an4s 647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏𝐴𝑏 ∈ Fin) ∧ (𝑛𝐶𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
115109, 110, 114syl2anb 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
116 elfpw 8613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
117115, 116sylibr 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
11887, 89, 117syl2anc 576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
119107, 108, 118rspcdva 3535 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
120101, 119mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)
121 simp3lr 1225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
122121simprd 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)
123 oveq2 6978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔 = → (𝐺 Σg 𝑔) = (𝐺 Σg ))
124123eleq1d 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑔 = → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ) ∈ 𝑡))
125124cbvralv 3377 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ ∈ (𝑠𝑚 𝑏)(𝐺 Σg ) ∈ 𝑡)
126122, 125sylib 210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ ∈ (𝑠𝑚 𝑏)(𝐺 Σg ) ∈ 𝑡)
1277, 77, 78, 79, 80, 81, 82, 84, 6, 16, 19, 70, 85, 86, 87, 88, 89, 101, 102, 120, 126tsmsxplem2 22455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1281273exp 1099 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
129128exp4a 424 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
1301293imp1 1327 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13176, 130rexlimddv 3230 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1321313expa 1098 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠𝑚 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13356, 132rexlimddv 3230 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
134133anassrs 460 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
135134expr 449 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
136135ralrimiva 3126 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
137 sseq1 3878 . . . . . . . . . . . . . . . . . 18 (𝑎 = dom 𝑦 → (𝑎𝑏 ↔ dom 𝑦𝑏))
138137rspceaimv 3537 . . . . . . . . . . . . . . . . 17 ((dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
13939, 136, 138syl2anc 576 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
140139rexlimdvaa 3224 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14126, 140embantd 59 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1421413expia 1101 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
143142anassrs 460 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
144143rexlimdva 3223 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
145144impcomd 403 . . . . . . . . . 10 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
146145rexlimdva 3223 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14725, 146syl5 34 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14824, 147mpan2d 681 . . . . . . 7 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1491483expia 1101 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (𝑥𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
150149com23 86 . . . . 5 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
151150ralrimdva 3133 . . . 4 (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
152151anim2d 602 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
153 eqid 2772 . . . 4 (𝒫 (𝐴 × 𝐶) ∩ Fin) = (𝒫 (𝐴 × 𝐶) ∩ Fin)
154 tgptps 22382 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
1551, 154syl 17 . . . 4 (𝜑𝐺 ∈ TopSp)
15660, 62xpexd 7285 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ V)
1577, 6, 153, 42, 155, 156, 64eltsms 22434 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)))))
158 eqid 2772 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
1597, 6, 158, 42, 155, 60, 66eltsms 22434 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
160152, 157, 1593imtr4d 286 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻)))
161160ssrdv 3860 1 (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082  wrex 3083  Vcvv 3409  cin 3824  wss 3825  𝒫 cpw 4416  {csn 4435  cmpt 5002   × cxp 5398  dom cdm 5400  ran crn 5401  cres 5402  Rel wrel 5405  wf 6178  cfv 6182  (class class class)co 6970  𝑚 cmap 8198  Fincfn 8298  0cn0 11700  chash 13498  Basecbs 16329  +gcplusg 16411  TopOpenctopn 16541  0gc0g 16559   Σg cgsu 16560  Mndcmnd 17752  -gcsg 17883  .gcmg 18001  CMndccmn 18656  TopOnctopon 21212  TopSpctps 21234  TopMndctmd 22372  TopGrpctgp 22373   tsums ctsu 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-seq 13178  df-hash 13499  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-rest 16542  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-mre 16705  df-mrc 16706  df-acs 16708  df-plusf 17699  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-mhm 17793  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mulg 18002  df-ghm 18117  df-cntz 18208  df-cmn 18658  df-abl 18659  df-fbas 20234  df-fg 20235  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-ntr 21322  df-nei 21400  df-cn 21529  df-cnp 21530  df-cmp 21689  df-tx 21864  df-xko 21865  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-tmd 22374  df-tgp 22375  df-tsms 22428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator