MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxp Structured version   Visualization version   GIF version

Theorem tsmsxp 24068
Description: Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19886 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 24066 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
Assertion
Ref Expression
tsmsxp (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Distinct variable groups:   𝑗,𝑘,𝐺   𝐵,𝑘   𝐴,𝑗,𝑘   𝑗,𝐻,𝑘   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem tsmsxp
Dummy variables 𝑔 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopGrp)
2 tgptmd 23992 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
433ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ TopMnd)
5 simp2 1137 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢 ∈ (TopOpen‘𝐺))
6 eqid 2731 . . . . . . . . . . . . 13 (TopOpen‘𝐺) = (TopOpen‘𝐺)
7 tsmsxp.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐺)
86, 7tmdtopon 23994 . . . . . . . . . . . 12 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
94, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
10 toponss 22840 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → 𝑢𝐵)
119, 5, 10syl2anc 584 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑢𝐵)
12 simp3 1138 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝑢)
1311, 12sseldd 3935 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝑥𝐵)
14 tmdmnd 23988 . . . . . . . . . . 11 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
154, 14syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → 𝐺 ∈ Mnd)
16 eqid 2731 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
177, 16mndidcl 18654 . . . . . . . . . 10 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (0g𝐺) ∈ 𝐵)
19 eqid 2731 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
207, 19, 16mndrid 18660 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2115, 13, 20syl2anc 584 . . . . . . . . . 10 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2221, 12eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)
237, 6, 19tmdcn2 24002 . . . . . . . . 9 (((𝐺 ∈ TopMnd ∧ 𝑢 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
244, 5, 13, 18, 22, 23syl23anc 1379 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢))
25 r19.29 3095 . . . . . . . . 9 ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)))
26 simp31 1210 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → 𝑥𝑣)
27 elfpw 9238 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝑦 ⊆ (𝐴 × 𝐶) ∧ 𝑦 ∈ Fin))
2827simplbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (𝐴 × 𝐶))
2928ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ⊆ (𝐴 × 𝐶))
30 dmss 5842 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝐴 × 𝐶) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
3129, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ⊆ dom (𝐴 × 𝐶))
32 dmxpss 6118 . . . . . . . . . . . . . . . . . . 19 dom (𝐴 × 𝐶) ⊆ 𝐴
3331, 32sstrdi 3947 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦𝐴)
34 elinel2 4152 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ∈ Fin)
3534ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → 𝑦 ∈ Fin)
36 dmfi 9219 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ Fin → dom 𝑦 ∈ Fin)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ Fin)
38 elfpw 9238 . . . . . . . . . . . . . . . . . 18 (dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (dom 𝑦𝐴 ∧ dom 𝑦 ∈ Fin))
3933, 37, 38sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
40 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (.g𝐺) = (.g𝐺)
41 simpl11 1249 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝜑)
42 tsmsxp.g . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ CMnd)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ CMnd)
4441, 3syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ TopMnd)
45 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
4645elin2d 4155 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑏 ∈ Fin)
47 simpl2r 1228 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝑡 ∈ (TopOpen‘𝐺))
4844, 14syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → 𝐺 ∈ Mnd)
4948, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝐵)
50 hashcl 14260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ Fin → (♯‘𝑏) ∈ ℕ0)
5146, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (♯‘𝑏) ∈ ℕ0)
527, 40, 16mulgnn0z 19011 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Mnd ∧ (♯‘𝑏) ∈ ℕ0) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
5348, 51, 52syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) = (0g𝐺))
54 simpl32 1256 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (0g𝐺) ∈ 𝑡)
5553, 54eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ((♯‘𝑏)(.g𝐺)(0g𝐺)) ∈ 𝑡)
566, 7, 40, 43, 44, 46, 47, 49, 55tmdgsum2 24009 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → ∃𝑠 ∈ (TopOpen‘𝐺)((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
57 simp111 1303 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝜑)
5857, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ CMnd)
5957, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐺 ∈ TopGrp)
60 tsmsxp.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴𝑉)
6157, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐴𝑉)
62 tsmsxp.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶𝑊)
6357, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐶𝑊)
64 tsmsxp.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
6557, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
66 tsmsxp.h . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:𝐴𝐵)
6757, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝐻:𝐴𝐵)
68 tsmsxp.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
6957, 68sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
70 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (-g𝐺) = (-g𝐺)
71 simp3l 1202 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑠 ∈ (TopOpen‘𝐺))
72 simp3rl 1247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (0g𝐺) ∈ 𝑠)
73 simp2rl 1243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
74 simp2rr 1244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → dom 𝑦𝑏)
75 simp2ll 1241 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
767, 58, 59, 61, 63, 65, 67, 69, 6, 16, 19, 70, 71, 72, 73, 74, 75tsmsxplem1 24066 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
77433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ CMnd)
78593adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐺 ∈ TopGrp)
79613adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐴𝑉)
80633adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐶𝑊)
81653adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
82673adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝐻:𝐴𝐵)
83413adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝜑)
8483, 68sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) ∧ 𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
85 simp3ll 1245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑠 ∈ (TopOpen‘𝐺))
86723adant3r 1182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (0g𝐺) ∈ 𝑠)
87 simp2rl 1243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
88 simp133 1311 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)
89 simp3rl 1247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑛 ∈ (𝒫 𝐶 ∩ Fin))
90 simp2ll 1241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
91 simp2rr 1244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → dom 𝑦𝑏)
92 simp3rr 1248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))
9392simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ran 𝑦𝑛)
94 relxp 5634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐴 × 𝐶)
95 relss 5722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ⊆ (𝐴 × 𝐶) → (Rel (𝐴 × 𝐶) → Rel 𝑦))
9628, 94, 95mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → Rel 𝑦)
97 relssdmrn 6216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Rel 𝑦𝑦 ⊆ (dom 𝑦 × ran 𝑦))
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝑦 ⊆ (dom 𝑦 × ran 𝑦))
99 xpss12 5631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((dom 𝑦𝑏 ∧ ran 𝑦𝑛) → (dom 𝑦 × ran 𝑦) ⊆ (𝑏 × 𝑛))
10098, 99sylan9ss 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ (dom 𝑦𝑏 ∧ ran 𝑦𝑛)) → 𝑦 ⊆ (𝑏 × 𝑛))
10190, 91, 93, 100syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → 𝑦 ⊆ (𝑏 × 𝑛))
10292simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)
103 sseq2 3961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → (𝑦𝑧𝑦 ⊆ (𝑏 × 𝑛)))
104 reseq2 5923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑏 × 𝑛) → (𝐹𝑧) = (𝐹 ↾ (𝑏 × 𝑛)))
105104oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑏 × 𝑛) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))))
106105eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑏 × 𝑛) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
107103, 106imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑏 × 𝑛) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) ↔ (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)))
108 simp2lr 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))
109 elfpw 9238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑏𝐴𝑏 ∈ Fin))
110 elfpw 9238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑛𝐶𝑛 ∈ Fin))
111 xpss12 5631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏𝐴𝑛𝐶) → (𝑏 × 𝑛) ⊆ (𝐴 × 𝐶))
112 xpfi 9204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ Fin ∧ 𝑛 ∈ Fin) → (𝑏 × 𝑛) ∈ Fin)
113111, 112anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏𝐴𝑛𝐶) ∧ (𝑏 ∈ Fin ∧ 𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
114113an4s 660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏𝐴𝑏 ∈ Fin) ∧ (𝑛𝐶𝑛 ∈ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
115109, 110, 114syl2anb 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
116 elfpw 9238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ ((𝑏 × 𝑛) ⊆ (𝐴 × 𝐶) ∧ (𝑏 × 𝑛) ∈ Fin))
117115, 116sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑛 ∈ (𝒫 𝐶 ∩ Fin)) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
11887, 89, 117syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑏 × 𝑛) ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))
119107, 108, 118rspcdva 3578 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝑦 ⊆ (𝑏 × 𝑛) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣))
120101, 119mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐹 ↾ (𝑏 × 𝑛))) ∈ 𝑣)
121 simp3lr 1246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))
122121simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)
123 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔 = → (𝐺 Σg 𝑔) = (𝐺 Σg ))
124123eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑔 = → ((𝐺 Σg 𝑔) ∈ 𝑡 ↔ (𝐺 Σg ) ∈ 𝑡))
125124cbvralvw 3210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡 ↔ ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
126122, 125sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → ∀ ∈ (𝑠m 𝑏)(𝐺 Σg ) ∈ 𝑡)
1277, 77, 78, 79, 80, 81, 82, 84, 6, 16, 19, 70, 85, 86, 87, 88, 89, 101, 102, 120, 126tsmsxplem2 24067 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1281273exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
129128exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → ((𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡)) → ((𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
1301293imp1 1348 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) ∧ (𝑛 ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝑦𝑛 ∧ ∀𝑥𝑏 ((𝐻𝑥)(-g𝐺)(𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝑠))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13176, 130rexlimddv 3139 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
1321313expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) ∧ (𝑠 ∈ (TopOpen‘𝐺) ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑔 ∈ (𝑠m 𝑏)(𝐺 Σg 𝑔) ∈ 𝑡))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
13356, 132rexlimddv 3139 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ ((𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏))) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
134133anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ dom 𝑦𝑏)) → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)
135134expr 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) ∧ 𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
136135ralrimiva 3124 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
137 sseq1 3960 . . . . . . . . . . . . . . . . . 18 (𝑎 = dom 𝑦 → (𝑎𝑏 ↔ dom 𝑦𝑏))
138137rspceaimv 3583 . . . . . . . . . . . . . . . . 17 ((dom 𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(dom 𝑦𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
13939, 136, 138syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) ∧ (𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))
140139rexlimdvaa 3134 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → (∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14126, 140embantd 59 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺)) ∧ (𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1421413expia 1121 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ (𝑣 ∈ (TopOpen‘𝐺) ∧ 𝑡 ∈ (TopOpen‘𝐺))) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
143142anassrs 467 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) ∧ 𝑡 ∈ (TopOpen‘𝐺)) → ((𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
144143rexlimdva 3133 . . . . . . . . . . 11 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢) → ((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
145144impcomd 411 . . . . . . . . . 10 (((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) ∧ 𝑣 ∈ (TopOpen‘𝐺)) → (((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
146145rexlimdva 3133 . . . . . . . . 9 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∃𝑣 ∈ (TopOpen‘𝐺)((𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14725, 146syl5 34 . . . . . . . 8 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → ((∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) ∧ ∃𝑣 ∈ (TopOpen‘𝐺)∃𝑡 ∈ (TopOpen‘𝐺)(𝑥𝑣 ∧ (0g𝐺) ∈ 𝑡 ∧ ∀𝑐𝑣𝑑𝑡 (𝑐(+g𝐺)𝑑) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
14824, 147mpan2d 694 . . . . . . 7 ((𝜑𝑢 ∈ (TopOpen‘𝐺) ∧ 𝑥𝑢) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))
1491483expia 1121 . . . . . 6 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (𝑥𝑢 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
150149com23 86 . . . . 5 ((𝜑𝑢 ∈ (TopOpen‘𝐺)) → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
151150ralrimdva 3132 . . . 4 (𝜑 → (∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)) → ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢))))
152151anim2d 612 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣))) → (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
153 eqid 2731 . . . 4 (𝒫 (𝐴 × 𝐶) ∩ Fin) = (𝒫 (𝐴 × 𝐶) ∩ Fin)
154 tgptps 23993 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
1551, 154syl 17 . . . 4 (𝜑𝐺 ∈ TopSp)
15660, 62xpexd 7684 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ V)
1577, 6, 153, 42, 155, 156, 64eltsms 24046 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑣 ∈ (TopOpen‘𝐺)(𝑥𝑣 → ∃𝑦 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)∀𝑧 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑣)))))
158 eqid 2731 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
1597, 6, 158, 42, 155, 60, 66eltsms 24046 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐻) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∀𝑏 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑏 → (𝐺 Σg (𝐻𝑏)) ∈ 𝑢)))))
160152, 157, 1593imtr4d 294 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ (𝐺 tsums 𝐻)))
161160ssrdv 3940 1 (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550  {csn 4576  cmpt 5172   × cxp 5614  dom cdm 5616  ran crn 5617  cres 5618  Rel wrel 5621  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  0cn0 12378  chash 14234  Basecbs 17117  +gcplusg 17158  TopOpenctopn 17322  0gc0g 17340   Σg cgsu 17341  Mndcmnd 18639  -gcsg 18845  .gcmg 18977  CMndccmn 19690  TopOnctopon 22823  TopSpctps 22845  TopMndctmd 23983  TopGrpctgp 23984   tsums ctsu 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-rest 17323  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-mre 17485  df-mrc 17486  df-acs 17488  df-plusf 18544  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-ntr 22933  df-nei 23011  df-cn 23140  df-cnp 23141  df-cmp 23300  df-tx 23475  df-xko 23476  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-tmd 23985  df-tgp 23986  df-tsms 24040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator