Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lneq2at Structured version   Visualization version   GIF version

Theorem lneq2at 38637
Description: A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
Hypotheses
Ref Expression
lneq2at.b 𝐡 = (Baseβ€˜πΎ)
lneq2at.l ≀ = (leβ€˜πΎ)
lneq2at.j ∨ = (joinβ€˜πΎ)
lneq2at.a 𝐴 = (Atomsβ€˜πΎ)
lneq2at.n 𝑁 = (Linesβ€˜πΎ)
lneq2at.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
lneq2at (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑋 = (𝑃 ∨ 𝑄))

Proof of Theorem lneq2at
Dummy variables 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
2 simp12 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑋 ∈ 𝐡)
31, 2jca 512 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡))
4 simp13 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (π‘€β€˜π‘‹) ∈ 𝑁)
5 lneq2at.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
6 lneq2at.j . . . . 5 ∨ = (joinβ€˜πΎ)
7 lneq2at.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
8 lneq2at.n . . . . 5 𝑁 = (Linesβ€˜πΎ)
9 lneq2at.m . . . . 5 𝑀 = (pmapβ€˜πΎ)
105, 6, 7, 8, 9isline3 38635 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ ((π‘€β€˜π‘‹) ∈ 𝑁 ↔ βˆƒπ‘Ÿ ∈ 𝐴 βˆƒπ‘  ∈ 𝐴 (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))))
1110biimpd 228 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ ((π‘€β€˜π‘‹) ∈ 𝑁 β†’ βˆƒπ‘Ÿ ∈ 𝐴 βˆƒπ‘  ∈ 𝐴 (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))))
123, 4, 11sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 βˆƒπ‘  ∈ 𝐴 (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠)))
13 simp3r 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ 𝑋 = (π‘Ÿ ∨ 𝑠))
14 simp111 1302 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ 𝐾 ∈ HL)
15 simp121 1305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ 𝑃 ∈ 𝐴)
16 simp122 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ 𝑄 ∈ 𝐴)
1715, 16jca 512 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
18 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴))
1914, 17, 183jca 1128 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)))
20 simp123 1307 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ 𝑃 β‰  𝑄)
2119, 20jca 512 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄))
221hllatd 38222 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ Lat)
23 simp21 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐴)
245, 7atbase 38147 . . . . . . . . . . . 12 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
2523, 24syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑃 ∈ 𝐡)
26 simp22 1207 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐴)
275, 7atbase 38147 . . . . . . . . . . . 12 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
2826, 27syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐡)
2925, 28, 23jca 1128 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡))
3022, 29jca 512 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)))
31 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋))
32 lneq2at.l . . . . . . . . . . 11 ≀ = (leβ€˜πΎ)
335, 32, 6latjle12 18399 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋) ↔ (𝑃 ∨ 𝑄) ≀ 𝑋))
3433biimpd 228 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋) β†’ (𝑃 ∨ 𝑄) ≀ 𝑋))
3530, 31, 34sylc 65 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (𝑃 ∨ 𝑄) ≀ 𝑋)
36353ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ (𝑃 ∨ 𝑄) ≀ 𝑋)
3736, 13breqtrd 5173 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ (𝑃 ∨ 𝑄) ≀ (π‘Ÿ ∨ 𝑠))
38 simpl1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ 𝐾 ∈ HL)
39 simpl2l 1226 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 ∈ 𝐴)
40 simpl2r 1227 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ 𝑄 ∈ 𝐴)
41 simpr 485 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 β‰  𝑄)
42 simpl3 1193 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴))
4332, 6, 7ps-1 38336 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ≀ (π‘Ÿ ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (π‘Ÿ ∨ 𝑠)))
4438, 39, 40, 41, 42, 43syl131anc 1383 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑄) ≀ (π‘Ÿ ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (π‘Ÿ ∨ 𝑠)))
4544biimpd 228 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑄) ≀ (π‘Ÿ ∨ 𝑠) β†’ (𝑃 ∨ 𝑄) = (π‘Ÿ ∨ 𝑠)))
4621, 37, 45sylc 65 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ (𝑃 ∨ 𝑄) = (π‘Ÿ ∨ 𝑠))
4713, 46eqtr4d 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠))) β†’ 𝑋 = (𝑃 ∨ 𝑄))
48473exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ ((π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) β†’ ((π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠)) β†’ 𝑋 = (𝑃 ∨ 𝑄))))
4948rexlimdvv 3210 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 βˆƒπ‘  ∈ 𝐴 (π‘Ÿ β‰  𝑠 ∧ 𝑋 = (π‘Ÿ ∨ 𝑠)) β†’ 𝑋 = (𝑃 ∨ 𝑄)))
5012, 49mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (π‘€β€˜π‘‹) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑋 = (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208  Linesclines 38353  pmapcpmap 38356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lines 38360  df-pmap 38363
This theorem is referenced by:  lnjatN  38639  lncmp  38642  cdlema1N  38650
  Copyright terms: Public domain W3C validator