Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lneq2at Structured version   Visualization version   GIF version

Theorem lneq2at 39802
Description: A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
Hypotheses
Ref Expression
lneq2at.b 𝐵 = (Base‘𝐾)
lneq2at.l = (le‘𝐾)
lneq2at.j = (join‘𝐾)
lneq2at.a 𝐴 = (Atoms‘𝐾)
lneq2at.n 𝑁 = (Lines‘𝐾)
lneq2at.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lneq2at (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋 = (𝑃 𝑄))

Proof of Theorem lneq2at
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋𝐵)
31, 2jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑋𝐵))
4 simp13 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑀𝑋) ∈ 𝑁)
5 lneq2at.b . . . . 5 𝐵 = (Base‘𝐾)
6 lneq2at.j . . . . 5 = (join‘𝐾)
7 lneq2at.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 lneq2at.n . . . . 5 𝑁 = (Lines‘𝐾)
9 lneq2at.m . . . . 5 𝑀 = (pmap‘𝐾)
105, 6, 7, 8, 9isline3 39800 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠))))
1110biimpd 229 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠))))
123, 4, 11sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠)))
13 simp3r 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑋 = (𝑟 𝑠))
14 simp111 1303 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝐾 ∈ HL)
15 simp121 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑃𝐴)
16 simp122 1307 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑄𝐴)
1715, 16jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃𝐴𝑄𝐴))
18 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑟𝐴𝑠𝐴))
1914, 17, 183jca 1128 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)))
20 simp123 1308 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑃𝑄)
2119, 20jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄))
221hllatd 39387 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝐾 ∈ Lat)
23 simp21 1207 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑃𝐴)
245, 7atbase 39312 . . . . . . . . . . . 12 (𝑃𝐴𝑃𝐵)
2523, 24syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑃𝐵)
26 simp22 1208 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑄𝐴)
275, 7atbase 39312 . . . . . . . . . . . 12 (𝑄𝐴𝑄𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑄𝐵)
2925, 28, 23jca 1128 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃𝐵𝑄𝐵𝑋𝐵))
3022, 29jca 511 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)))
31 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃 𝑋𝑄 𝑋))
32 lneq2at.l . . . . . . . . . . 11 = (le‘𝐾)
335, 32, 6latjle12 18465 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) ↔ (𝑃 𝑄) 𝑋))
3433biimpd 229 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) → (𝑃 𝑄) 𝑋))
3530, 31, 34sylc 65 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃 𝑄) 𝑋)
36353ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) 𝑋)
3736, 13breqtrd 5150 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) (𝑟 𝑠))
38 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
39 simpl2l 1227 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑃𝐴)
40 simpl2r 1228 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑄𝐴)
41 simpr 484 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑃𝑄)
42 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → (𝑟𝐴𝑠𝐴))
4332, 6, 7ps-1 39501 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑟𝐴𝑠𝐴)) → ((𝑃 𝑄) (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑟 𝑠)))
4438, 39, 40, 41, 42, 43syl131anc 1385 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → ((𝑃 𝑄) (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑟 𝑠)))
4544biimpd 229 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → ((𝑃 𝑄) (𝑟 𝑠) → (𝑃 𝑄) = (𝑟 𝑠)))
4621, 37, 45sylc 65 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) = (𝑟 𝑠))
4713, 46eqtr4d 2774 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑋 = (𝑃 𝑄))
48473exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟 𝑠)) → 𝑋 = (𝑃 𝑄))))
4948rexlimdvv 3201 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠)) → 𝑋 = (𝑃 𝑄)))
5012, 49mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋 = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  Latclat 18446  Atomscatm 39286  HLchlt 39373  Linesclines 39518  pmapcpmap 39521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-lines 39525  df-pmap 39528
This theorem is referenced by:  lnjatN  39804  lncmp  39807  cdlema1N  39815
  Copyright terms: Public domain W3C validator