Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝐾 ∈ HL) |
2 | | simp12 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑋 ∈ 𝐵) |
3 | 1, 2 | jca 511 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵)) |
4 | | simp13 1203 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (𝑀‘𝑋) ∈ 𝑁) |
5 | | lneq2at.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
6 | | lneq2at.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
7 | | lneq2at.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | lneq2at.n |
. . . . 5
⊢ 𝑁 = (Lines‘𝐾) |
9 | | lneq2at.m |
. . . . 5
⊢ 𝑀 = (pmap‘𝐾) |
10 | 5, 6, 7, 8, 9 | isline3 37717 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠)))) |
11 | 10 | biimpd 228 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠)))) |
12 | 3, 4, 11 | sylc 65 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) |
13 | | simp3r 1200 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → 𝑋 = (𝑟 ∨ 𝑠)) |
14 | | simp111 1300 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → 𝐾 ∈ HL) |
15 | | simp121 1303 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → 𝑃 ∈ 𝐴) |
16 | | simp122 1304 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → 𝑄 ∈ 𝐴) |
17 | 15, 16 | jca 511 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
18 | | simp2 1135 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) |
19 | 14, 17, 18 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴))) |
20 | | simp123 1305 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → 𝑃 ≠ 𝑄) |
21 | 19, 20 | jca 511 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄)) |
22 | 1 | hllatd 37305 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝐾 ∈ Lat) |
23 | | simp21 1204 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑃 ∈ 𝐴) |
24 | 5, 7 | atbase 37230 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑃 ∈ 𝐵) |
26 | | simp22 1205 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐴) |
27 | 5, 7 | atbase 37230 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐵) |
29 | 25, 28, 2 | 3jca 1126 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
30 | 22, 29 | jca 511 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵))) |
31 | | simp3 1136 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) |
32 | | lneq2at.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
33 | 5, 32, 6 | latjle12 18083 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑃 ∨ 𝑄) ≤ 𝑋)) |
34 | 33 | biimpd 228 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) → (𝑃 ∨ 𝑄) ≤ 𝑋)) |
35 | 30, 31, 34 | sylc 65 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (𝑃 ∨ 𝑄) ≤ 𝑋) |
36 | 35 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → (𝑃 ∨ 𝑄) ≤ 𝑋) |
37 | 36, 13 | breqtrd 5096 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → (𝑃 ∨ 𝑄) ≤ (𝑟 ∨ 𝑠)) |
38 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
39 | | simpl2l 1224 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) |
40 | | simpl2r 1225 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
41 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
42 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) |
43 | 32, 6, 7 | ps-1 37418 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
44 | 38, 39, 40, 41, 42, 43 | syl131anc 1381 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ≤ (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
45 | 44 | biimpd 228 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ≤ (𝑟 ∨ 𝑠) → (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
46 | 21, 37, 45 | sylc 65 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)) |
47 | 13, 46 | eqtr4d 2781 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠))) → 𝑋 = (𝑃 ∨ 𝑄)) |
48 | 47 | 3exp 1117 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → ((𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠)) → 𝑋 = (𝑃 ∨ 𝑄)))) |
49 | 48 | rexlimdvv 3221 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → (∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ 𝑋 = (𝑟 ∨ 𝑠)) → 𝑋 = (𝑃 ∨ 𝑄))) |
50 | 12, 49 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑀‘𝑋) ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋)) → 𝑋 = (𝑃 ∨ 𝑄)) |