Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lneq2at Structured version   Visualization version   GIF version

Theorem lneq2at 39816
Description: A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
Hypotheses
Ref Expression
lneq2at.b 𝐵 = (Base‘𝐾)
lneq2at.l = (le‘𝐾)
lneq2at.j = (join‘𝐾)
lneq2at.a 𝐴 = (Atoms‘𝐾)
lneq2at.n 𝑁 = (Lines‘𝐾)
lneq2at.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lneq2at (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋 = (𝑃 𝑄))

Proof of Theorem lneq2at
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝐾 ∈ HL)
2 simp12 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋𝐵)
31, 2jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝐾 ∈ HL ∧ 𝑋𝐵))
4 simp13 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑀𝑋) ∈ 𝑁)
5 lneq2at.b . . . . 5 𝐵 = (Base‘𝐾)
6 lneq2at.j . . . . 5 = (join‘𝐾)
7 lneq2at.a . . . . 5 𝐴 = (Atoms‘𝐾)
8 lneq2at.n . . . . 5 𝑁 = (Lines‘𝐾)
9 lneq2at.m . . . . 5 𝑀 = (pmap‘𝐾)
105, 6, 7, 8, 9isline3 39814 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠))))
1110biimpd 229 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠))))
123, 4, 11sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠)))
13 simp3r 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑋 = (𝑟 𝑠))
14 simp111 1303 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝐾 ∈ HL)
15 simp121 1306 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑃𝐴)
16 simp122 1307 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑄𝐴)
1715, 16jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃𝐴𝑄𝐴))
18 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑟𝐴𝑠𝐴))
1914, 17, 183jca 1128 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)))
20 simp123 1308 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑃𝑄)
2119, 20jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄))
221hllatd 39402 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝐾 ∈ Lat)
23 simp21 1207 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑃𝐴)
245, 7atbase 39327 . . . . . . . . . . . 12 (𝑃𝐴𝑃𝐵)
2523, 24syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑃𝐵)
26 simp22 1208 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑄𝐴)
275, 7atbase 39327 . . . . . . . . . . . 12 (𝑄𝐴𝑄𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑄𝐵)
2925, 28, 23jca 1128 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃𝐵𝑄𝐵𝑋𝐵))
3022, 29jca 511 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)))
31 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃 𝑋𝑄 𝑋))
32 lneq2at.l . . . . . . . . . . 11 = (le‘𝐾)
335, 32, 6latjle12 18353 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) ↔ (𝑃 𝑄) 𝑋))
3433biimpd 229 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃 𝑋𝑄 𝑋) → (𝑃 𝑄) 𝑋))
3530, 31, 34sylc 65 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (𝑃 𝑄) 𝑋)
36353ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) 𝑋)
3736, 13breqtrd 5117 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) (𝑟 𝑠))
38 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
39 simpl2l 1227 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑃𝐴)
40 simpl2r 1228 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑄𝐴)
41 simpr 484 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → 𝑃𝑄)
42 simpl3 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → (𝑟𝐴𝑠𝐴))
4332, 6, 7ps-1 39515 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑟𝐴𝑠𝐴)) → ((𝑃 𝑄) (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑟 𝑠)))
4438, 39, 40, 41, 42, 43syl131anc 1385 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → ((𝑃 𝑄) (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑟 𝑠)))
4544biimpd 229 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑠𝐴)) ∧ 𝑃𝑄) → ((𝑃 𝑄) (𝑟 𝑠) → (𝑃 𝑄) = (𝑟 𝑠)))
4621, 37, 45sylc 65 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → (𝑃 𝑄) = (𝑟 𝑠))
4713, 46eqtr4d 2769 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) ∧ (𝑟𝐴𝑠𝐴) ∧ (𝑟𝑠𝑋 = (𝑟 𝑠))) → 𝑋 = (𝑃 𝑄))
48473exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → ((𝑟𝐴𝑠𝐴) → ((𝑟𝑠𝑋 = (𝑟 𝑠)) → 𝑋 = (𝑃 𝑄))))
4948rexlimdvv 3188 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → (∃𝑟𝐴𝑠𝐴 (𝑟𝑠𝑋 = (𝑟 𝑠)) → 𝑋 = (𝑃 𝑄)))
5012, 49mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝑁) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑃 𝑋𝑄 𝑋)) → 𝑋 = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  Latclat 18334  Atomscatm 39301  HLchlt 39388  Linesclines 39532  pmapcpmap 39535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-lines 39539  df-pmap 39542
This theorem is referenced by:  lnjatN  39818  lncmp  39821  cdlema1N  39829
  Copyright terms: Public domain W3C validator