Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp33r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp33r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1201 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: totprob 32394 cdleme19b 38318 cdleme19e 38321 cdleme20h 38330 cdleme20l2 38335 cdleme20m 38337 cdleme21d 38344 cdleme21e 38345 cdleme22eALTN 38359 cdleme22f2 38361 cdleme22g 38362 cdleme26e 38373 cdleme37m 38476 cdlemeg46gfre 38546 cdlemg28a 38707 cdlemg28b 38717 cdlemk5a 38849 cdlemk6 38851 |
Copyright terms: Public domain | W3C validator |