MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1203 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34435  cdleme19b  40342  cdleme19e  40345  cdleme20h  40354  cdleme20l2  40359  cdleme20m  40361  cdleme21d  40368  cdleme21e  40369  cdleme22eALTN  40383  cdleme22f2  40385  cdleme22g  40386  cdleme26e  40397  cdleme37m  40500  cdlemeg46gfre  40570  cdlemg28a  40731  cdlemg28b  40741  cdlemk5a  40873  cdlemk6  40875
  Copyright terms: Public domain W3C validator