MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1203 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34461  cdleme19b  40423  cdleme19e  40426  cdleme20h  40435  cdleme20l2  40440  cdleme20m  40442  cdleme21d  40449  cdleme21e  40450  cdleme22eALTN  40464  cdleme22f2  40466  cdleme22g  40467  cdleme26e  40478  cdleme37m  40581  cdlemeg46gfre  40651  cdlemg28a  40812  cdlemg28b  40822  cdlemk5a  40954  cdlemk6  40956
  Copyright terms: Public domain W3C validator