MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1203 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34425  cdleme19b  40305  cdleme19e  40308  cdleme20h  40317  cdleme20l2  40322  cdleme20m  40324  cdleme21d  40331  cdleme21e  40332  cdleme22eALTN  40346  cdleme22f2  40348  cdleme22g  40349  cdleme26e  40360  cdleme37m  40463  cdlemeg46gfre  40533  cdlemg28a  40694  cdlemg28b  40704  cdlemk5a  40836  cdlemk6  40838
  Copyright terms: Public domain W3C validator