MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1301
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1202 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  totprob  34392  cdleme19b  40261  cdleme19e  40264  cdleme20h  40273  cdleme20l2  40278  cdleme20m  40280  cdleme21d  40287  cdleme21e  40288  cdleme22eALTN  40302  cdleme22f2  40304  cdleme22g  40305  cdleme26e  40316  cdleme37m  40419  cdlemeg46gfre  40489  cdlemg28a  40650  cdlemg28b  40660  cdlemk5a  40792  cdlemk6  40794
  Copyright terms: Public domain W3C validator