| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp33r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp33r | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3r 1203 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: totprob 34461 cdleme19b 40423 cdleme19e 40426 cdleme20h 40435 cdleme20l2 40440 cdleme20m 40442 cdleme21d 40449 cdleme21e 40450 cdleme22eALTN 40464 cdleme22f2 40466 cdleme22g 40467 cdleme26e 40478 cdleme37m 40581 cdlemeg46gfre 40651 cdlemg28a 40812 cdlemg28b 40822 cdlemk5a 40954 cdlemk6 40956 |
| Copyright terms: Public domain | W3C validator |