MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1300
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1201 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1134 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  totprob  34409  cdleme19b  40287  cdleme19e  40290  cdleme20h  40299  cdleme20l2  40304  cdleme20m  40306  cdleme21d  40313  cdleme21e  40314  cdleme22eALTN  40328  cdleme22f2  40330  cdleme22g  40331  cdleme26e  40342  cdleme37m  40445  cdlemeg46gfre  40515  cdlemg28a  40676  cdlemg28b  40686  cdlemk5a  40818  cdlemk6  40820
  Copyright terms: Public domain W3C validator