MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1300
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1201 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1134 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  totprob  32394  cdleme19b  38318  cdleme19e  38321  cdleme20h  38330  cdleme20l2  38335  cdleme20m  38337  cdleme21d  38344  cdleme21e  38345  cdleme22eALTN  38359  cdleme22f2  38361  cdleme22g  38362  cdleme26e  38373  cdleme37m  38476  cdlemeg46gfre  38546  cdlemg28a  38707  cdlemg28b  38717  cdlemk5a  38849  cdlemk6  38851
  Copyright terms: Public domain W3C validator