MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1299
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1200 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1133 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  totprob  32294  cdleme19b  38245  cdleme19e  38248  cdleme20h  38257  cdleme20l2  38262  cdleme20m  38264  cdleme21d  38271  cdleme21e  38272  cdleme22eALTN  38286  cdleme22f2  38288  cdleme22g  38289  cdleme26e  38300  cdleme37m  38403  cdlemeg46gfre  38473  cdlemg28a  38634  cdlemg28b  38644  cdlemk5a  38776  cdlemk6  38778
  Copyright terms: Public domain W3C validator