MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp33r Structured version   Visualization version   GIF version

Theorem simp33r 1302
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp33r ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp33r
StepHypRef Expression
1 simp3r 1203 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1136 1 ((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  totprob  34429  cdleme19b  40306  cdleme19e  40309  cdleme20h  40318  cdleme20l2  40323  cdleme20m  40325  cdleme21d  40332  cdleme21e  40333  cdleme22eALTN  40347  cdleme22f2  40349  cdleme22g  40350  cdleme26e  40361  cdleme37m  40464  cdlemeg46gfre  40534  cdlemg28a  40695  cdlemg28b  40705  cdlemk5a  40837  cdlemk6  40839
  Copyright terms: Public domain W3C validator