Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2b Structured version   Visualization version   GIF version

Theorem ps-2b 39430
Description: Variation of projective geometry axiom ps-2 39426. (Contributed by NM, 3-Jul-2012.)
Hypotheses
Ref Expression
ps-2b.l = (le‘𝐾)
ps-2b.j = (join‘𝐾)
ps-2b.m = (meet‘𝐾)
ps-2b.z 0 = (0.‘𝐾)
ps-2b.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-2b (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ 0 )

Proof of Theorem ps-2b
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp11 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝐾 ∈ HL)
2 simp12 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑃𝐴)
3 simp13 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑄𝐴)
4 simp21 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑅𝐴)
52, 3, 43jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
6 simp22 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑆𝐴)
7 simp23 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇𝐴)
86, 7jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑆𝐴𝑇𝐴))
9 simp31 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ¬ 𝑃 (𝑄 𝑅))
10 simp32 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑆𝑇)
119, 10jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇))
12 simp33 1211 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))
13 ps-2b.l . . . 4 = (le‘𝐾)
14 ps-2b.j . . . 4 = (join‘𝐾)
15 ps-2b.a . . . 4 𝐴 = (Atoms‘𝐾)
1613, 14, 15ps-2 39426 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
171, 5, 8, 11, 12, 16syl32anc 1379 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
18 simp111 1302 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝐾 ∈ HL)
19 hlatl 39307 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2018, 19syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝐾 ∈ AtLat)
2118hllatd 39311 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝐾 ∈ Lat)
22 simp112 1303 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑃𝐴)
23 simp121 1305 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑅𝐴)
24 eqid 2734 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2524, 14, 15hlatjcl 39314 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
2618, 22, 23, 25syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → (𝑃 𝑅) ∈ (Base‘𝐾))
27 simp122 1306 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑆𝐴)
28 simp123 1307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑇𝐴)
2924, 14, 15hlatjcl 39314 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
3018, 27, 28, 29syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → (𝑆 𝑇) ∈ (Base‘𝐾))
31 ps-2b.m . . . . . 6 = (meet‘𝐾)
3224, 31latmcl 18437 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾))
3321, 26, 30, 32syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → ((𝑃 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾))
34 simp2 1137 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑢𝐴)
35 simp3 1138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
3624, 15atbase 39236 . . . . . . 7 (𝑢𝐴𝑢 ∈ (Base‘𝐾))
3734, 36syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑢 ∈ (Base‘𝐾))
3824, 13, 31latlem12 18463 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑢 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) ↔ 𝑢 ((𝑃 𝑅) (𝑆 𝑇))))
3921, 37, 26, 30, 38syl13anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → ((𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) ↔ 𝑢 ((𝑃 𝑅) (𝑆 𝑇))))
4035, 39mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → 𝑢 ((𝑃 𝑅) (𝑆 𝑇)))
41 ps-2b.z . . . . 5 0 = (0.‘𝐾)
4224, 13, 41, 15atlen0 39257 . . . 4 (((𝐾 ∈ AtLat ∧ ((𝑃 𝑅) (𝑆 𝑇)) ∈ (Base‘𝐾) ∧ 𝑢𝐴) ∧ 𝑢 ((𝑃 𝑅) (𝑆 𝑇))) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ 0 )
4320, 33, 34, 40, 42syl31anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) ∧ 𝑢𝐴 ∧ (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ 0 )
4443rexlimdv3a 3143 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ 0 ))
4517, 44mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059   class class class wbr 5117  cfv 6528  (class class class)co 7400  Basecbs 17215  lecple 17265  joincjn 18310  meetcmee 18311  0.cp0 18420  Latclat 18428  Atomscatm 39210  AtLatcal 39211  HLchlt 39297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-proset 18293  df-poset 18312  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-lat 18429  df-clat 18496  df-oposet 39123  df-ol 39125  df-oml 39126  df-covers 39213  df-ats 39214  df-atl 39245  df-cvlat 39269  df-hlat 39298
This theorem is referenced by:  ps-2c  39476
  Copyright terms: Public domain W3C validator