Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31c Structured version   Visualization version   GIF version

Theorem cdlemg31c 40682
Description: Show that when 𝑁 is an atom, it is not under 𝑊. TODO: Is there a shorter direct proof? TODO: should we eliminate (𝐹𝑃) ≠ 𝑃 here? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)

Proof of Theorem cdlemg31c
StepHypRef Expression
1 simp11l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐾 ∈ HL)
2 simp11r 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑊𝐻)
31, 2jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp31 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣 ≠ (𝑅𝐹))
65necomd 2994 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ≠ 𝑣)
7 simp12 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2r 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐹𝑇)
9 simp32 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐹𝑃) ≠ 𝑃)
10 cdlemg12.l . . . . 5 = (le‘𝐾)
11 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1510, 11, 12, 13, 14trlat 40152 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
163, 7, 8, 9, 15syl112anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ∈ 𝐴)
1710, 12, 13, 14trlle 40167 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
183, 8, 17syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) 𝑊)
19 simp2l 1198 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑣𝐴𝑣 𝑊))
20 cdlemg12.j . . . 4 = (join‘𝐾)
2110, 20, 11, 12lhp2atnle 40016 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐹) ≠ 𝑣) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
223, 4, 6, 16, 18, 19, 21syl321anc 1391 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
23 simp12l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑃𝐴)
24 simp13l 1287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑄𝐴)
25 simp2ll 1239 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣𝐴)
26 cdlemg12.m . . . . . . 7 = (meet‘𝐾)
27 cdlemg31.n . . . . . . 7 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
2810, 20, 26, 11, 12, 13, 14, 27cdlemg31a 40680 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
291, 2, 23, 24, 25, 8, 28syl222anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑃 𝑣))
3029adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑃 𝑣))
31 simp111 1301 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simp112 1302 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simp3 1137 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝑣)
3433necomd 2994 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑣𝑁)
35 simp12l 1285 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑣𝐴𝑣 𝑊))
36 simp133 1309 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝐴)
37 simp2 1136 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁 𝑊)
3810, 20, 11, 12lhp2atnle 40016 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣𝑁) ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑁 𝑊)) → ¬ 𝑁 (𝑃 𝑣))
3931, 32, 34, 35, 36, 37, 38syl312anc 1390 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → ¬ 𝑁 (𝑃 𝑣))
40393expia 1120 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁𝑣 → ¬ 𝑁 (𝑃 𝑣)))
4140necon4ad 2957 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁 (𝑃 𝑣) → 𝑁 = 𝑣))
4230, 41mpd 15 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 = 𝑣)
4310, 20, 26, 11, 12, 13, 14, 27cdlemg31b 40681 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))
441, 2, 23, 24, 25, 8, 43syl222anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑄 (𝑅𝐹)))
4544adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑄 (𝑅𝐹)))
4642, 45eqbrtrrd 5172 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑣 (𝑄 (𝑅𝐹)))
4722, 46mtand 816 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  meetcmee 18370  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  cdlemg31d  40683
  Copyright terms: Public domain W3C validator