Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31c Structured version   Visualization version   GIF version

Theorem cdlemg31c 40656
Description: Show that when 𝑁 is an atom, it is not under 𝑊. TODO: Is there a shorter direct proof? TODO: should we eliminate (𝐹𝑃) ≠ 𝑃 here? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)

Proof of Theorem cdlemg31c
StepHypRef Expression
1 simp11l 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐾 ∈ HL)
2 simp11r 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑊𝐻)
31, 2jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp31 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣 ≠ (𝑅𝐹))
65necomd 3002 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ≠ 𝑣)
7 simp12 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2r 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐹𝑇)
9 simp32 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐹𝑃) ≠ 𝑃)
10 cdlemg12.l . . . . 5 = (le‘𝐾)
11 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1510, 11, 12, 13, 14trlat 40126 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
163, 7, 8, 9, 15syl112anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ∈ 𝐴)
1710, 12, 13, 14trlle 40141 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
183, 8, 17syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) 𝑊)
19 simp2l 1199 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑣𝐴𝑣 𝑊))
20 cdlemg12.j . . . 4 = (join‘𝐾)
2110, 20, 11, 12lhp2atnle 39990 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐹) ≠ 𝑣) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
223, 4, 6, 16, 18, 19, 21syl321anc 1392 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
23 simp12l 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑃𝐴)
24 simp13l 1288 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑄𝐴)
25 simp2ll 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣𝐴)
26 cdlemg12.m . . . . . . 7 = (meet‘𝐾)
27 cdlemg31.n . . . . . . 7 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
2810, 20, 26, 11, 12, 13, 14, 27cdlemg31a 40654 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
291, 2, 23, 24, 25, 8, 28syl222anc 1386 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑃 𝑣))
3029adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑃 𝑣))
31 simp111 1302 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simp112 1303 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simp3 1138 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝑣)
3433necomd 3002 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑣𝑁)
35 simp12l 1286 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑣𝐴𝑣 𝑊))
36 simp133 1310 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝐴)
37 simp2 1137 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁 𝑊)
3810, 20, 11, 12lhp2atnle 39990 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣𝑁) ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑁 𝑊)) → ¬ 𝑁 (𝑃 𝑣))
3931, 32, 34, 35, 36, 37, 38syl312anc 1391 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → ¬ 𝑁 (𝑃 𝑣))
40393expia 1121 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁𝑣 → ¬ 𝑁 (𝑃 𝑣)))
4140necon4ad 2965 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁 (𝑃 𝑣) → 𝑁 = 𝑣))
4230, 41mpd 15 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 = 𝑣)
4310, 20, 26, 11, 12, 13, 14, 27cdlemg31b 40655 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))
441, 2, 23, 24, 25, 8, 43syl222anc 1386 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑄 (𝑅𝐹)))
4544adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑄 (𝑅𝐹)))
4642, 45eqbrtrrd 5190 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑣 (𝑄 (𝑅𝐹)))
4722, 46mtand 815 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  cdlemg31d  40657
  Copyright terms: Public domain W3C validator