Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31c Structured version   Visualization version   GIF version

Theorem cdlemg31c 37967
Description: Show that when 𝑁 is an atom, it is not under 𝑊. TODO: Is there a shorter direct proof? TODO: should we eliminate (𝐹𝑃) ≠ 𝑃 here? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)

Proof of Theorem cdlemg31c
StepHypRef Expression
1 simp11l 1281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐾 ∈ HL)
2 simp11r 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑊𝐻)
31, 2jca 515 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp31 1206 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣 ≠ (𝑅𝐹))
65necomd 3069 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ≠ 𝑣)
7 simp12 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2r 1197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝐹𝑇)
9 simp32 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝐹𝑃) ≠ 𝑃)
10 cdlemg12.l . . . . 5 = (le‘𝐾)
11 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1510, 11, 12, 13, 14trlat 37437 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
163, 7, 8, 9, 15syl112anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) ∈ 𝐴)
1710, 12, 13, 14trlle 37452 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
183, 8, 17syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑅𝐹) 𝑊)
19 simp2l 1196 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → (𝑣𝐴𝑣 𝑊))
20 cdlemg12.j . . . 4 = (join‘𝐾)
2110, 20, 11, 12lhp2atnle 37301 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐹) ≠ 𝑣) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
223, 4, 6, 16, 18, 19, 21syl321anc 1389 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑣 (𝑄 (𝑅𝐹)))
23 simp12l 1283 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑃𝐴)
24 simp13l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑄𝐴)
25 simp2ll 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑣𝐴)
26 cdlemg12.m . . . . . . 7 = (meet‘𝐾)
27 cdlemg31.n . . . . . . 7 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
2810, 20, 26, 11, 12, 13, 14, 27cdlemg31a 37965 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
291, 2, 23, 24, 25, 8, 28syl222anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑃 𝑣))
3029adantr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑃 𝑣))
31 simp111 1299 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simp112 1300 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
33 simp3 1135 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝑣)
3433necomd 3069 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑣𝑁)
35 simp12l 1283 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → (𝑣𝐴𝑣 𝑊))
36 simp133 1307 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁𝐴)
37 simp2 1134 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → 𝑁 𝑊)
3810, 20, 11, 12lhp2atnle 37301 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣𝑁) ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝑁𝐴𝑁 𝑊)) → ¬ 𝑁 (𝑃 𝑣))
3931, 32, 34, 35, 36, 37, 38syl312anc 1388 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊𝑁𝑣) → ¬ 𝑁 (𝑃 𝑣))
40393expia 1118 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁𝑣 → ¬ 𝑁 (𝑃 𝑣)))
4140necon4ad 3033 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → (𝑁 (𝑃 𝑣) → 𝑁 = 𝑣))
4230, 41mpd 15 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 = 𝑣)
4310, 20, 26, 11, 12, 13, 14, 27cdlemg31b 37966 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑄 (𝑅𝐹)))
441, 2, 23, 24, 25, 8, 43syl222anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → 𝑁 (𝑄 (𝑅𝐹)))
4544adantr 484 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑁 (𝑄 (𝑅𝐹)))
4642, 45eqbrtrrd 5077 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) ∧ 𝑁 𝑊) → 𝑣 (𝑄 (𝑅𝐹)))
4722, 46mtand 815 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃𝑁𝐴)) → ¬ 𝑁 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5053  cfv 6345  (class class class)co 7151  lecple 16574  joincjn 17556  meetcmee 17557  Atomscatm 36531  HLchlt 36618  LHypclh 37252  LTrncltrn 37369  trLctrl 37426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7686  df-2nd 7687  df-map 8406  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36444  df-ol 36446  df-oml 36447  df-covers 36534  df-ats 36535  df-atl 36566  df-cvlat 36590  df-hlat 36619  df-psubsp 36771  df-pmap 36772  df-padd 37064  df-lhyp 37256  df-laut 37257  df-ldil 37372  df-ltrn 37373  df-trl 37427
This theorem is referenced by:  cdlemg31d  37968
  Copyright terms: Public domain W3C validator