MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp311 Structured version   Visualization version   GIF version

Theorem simp311 1321
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp311 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜑)

Proof of Theorem simp311
StepHypRef Expression
1 simp11 1204 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalem-clpjq  39604  dath2  39704  cdleme26e  40326  cdleme38m  40430  cdleme38n  40431  cdleme39n  40433  cdlemg28b  40670  cdlemk7  40815  cdlemk11  40816  cdlemk12  40817  cdlemk7u  40837  cdlemk11u  40838  cdlemk12u  40839  cdlemk22  40860  cdlemk23-3  40869  cdlemk25-3  40871
  Copyright terms: Public domain W3C validator