MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp311 Structured version   Visualization version   GIF version

Theorem simp311 1321
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp311 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜑)

Proof of Theorem simp311
StepHypRef Expression
1 simp11 1204 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalem-clpjq  39616  dath2  39716  cdleme26e  40338  cdleme38m  40442  cdleme38n  40443  cdleme39n  40445  cdlemg28b  40682  cdlemk7  40827  cdlemk11  40828  cdlemk12  40829  cdlemk7u  40849  cdlemk11u  40850  cdlemk12u  40851  cdlemk22  40872  cdlemk23-3  40881  cdlemk25-3  40883
  Copyright terms: Public domain W3C validator