MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp312 Structured version   Visualization version   GIF version

Theorem simp312 1321
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp312 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)

Proof of Theorem simp312
StepHypRef Expression
1 simp12 1204 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  dalemrot  39614  dalem-cly  39628  dath2  39694  cdleme26e  40316  cdleme38m  40420  cdleme38n  40421  cdleme39n  40423  cdlemg28b  40660  cdlemk7  40805  cdlemk11  40806  cdlemk12  40807  cdlemk7u  40827  cdlemk11u  40828  cdlemk12u  40829  cdlemk22  40850  cdlemk23-3  40859  cdlemk25-3  40861
  Copyright terms: Public domain W3C validator