MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp312 Structured version   Visualization version   GIF version

Theorem simp312 1319
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp312 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)

Proof of Theorem simp312
StepHypRef Expression
1 simp12 1202 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant3 1133 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  dalemrot  38831  dalem-cly  38845  dath2  38911  cdleme26e  39533  cdleme38m  39637  cdleme38n  39638  cdleme39n  39640  cdlemg28b  39877  cdlemk7  40022  cdlemk11  40023  cdlemk12  40024  cdlemk7u  40044  cdlemk11u  40045  cdlemk12u  40046  cdlemk22  40067  cdlemk23-3  40076  cdlemk25-3  40078
  Copyright terms: Public domain W3C validator