Proof of Theorem cdleme38m
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 2 | | simp2 1137 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) |
| 3 | | simp311 1320 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 4 | | simp312 1321 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 5 | | simp313 1322 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝐹 = 𝐺) |
| 6 | 3, 4 | jca 511 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) |
| 7 | | simp32 1210 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄))) |
| 8 | | simp33 1211 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
| 9 | | cdleme38.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 10 | | cdleme38.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 11 | | cdleme38.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 12 | | cdleme38.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 13 | | cdleme38.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 14 | | cdleme38.u |
. . . . . 6
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 15 | | cdleme38.e |
. . . . . 6
⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 16 | | cdleme38.d |
. . . . . 6
⊢ 𝐷 = ((𝑢 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑢) ∧ 𝑊))) |
| 17 | | cdleme38.v |
. . . . . 6
⊢ 𝑉 = ((𝑡 ∨ 𝐸) ∧ 𝑊) |
| 18 | | cdleme38.x |
. . . . . 6
⊢ 𝑋 = ((𝑢 ∨ 𝐷) ∧ 𝑊) |
| 19 | | eqid 2734 |
. . . . . 6
⊢ ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))) = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))) |
| 20 | | cdleme38.g |
. . . . . 6
⊢ 𝐺 = ((𝑆 ∨ 𝑋) ∧ (𝐷 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) |
| 21 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdleme37m 40423 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))) = 𝐺) |
| 22 | 1, 2, 6, 7, 8, 21 | syl113anc 1383 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))) = 𝐺) |
| 23 | 5, 22 | eqtr4d 2772 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝐹 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊)))) |
| 24 | 3, 4, 23 | 3jca 1128 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊))))) |
| 25 | | eqid 2734 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 26 | | cdleme38.f |
. . 3
⊢ 𝐹 = ((𝑅 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑅) ∧ 𝑊))) |
| 27 | 25, 9, 10, 11, 12, 13, 14, 15, 17, 26, 19 | cdleme36m 40422 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑆) ∧ 𝑊)))) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 = 𝑆) |
| 28 | 1, 2, 24, 7, 27 | syl112anc 1375 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊) ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 = 𝑆) |