Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme38m Structured version   Visualization version   GIF version

Theorem cdleme38m 39638
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 ∨ 𝑄 line. TODO: FIX COMMENT. (Contributed by NM, 13-Mar-2013.)
Hypotheses
Ref Expression
cdleme38.l ≀ = (leβ€˜πΎ)
cdleme38.j ∨ = (joinβ€˜πΎ)
cdleme38.m ∧ = (meetβ€˜πΎ)
cdleme38.a 𝐴 = (Atomsβ€˜πΎ)
cdleme38.h 𝐻 = (LHypβ€˜πΎ)
cdleme38.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme38.e 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdleme38.d 𝐷 = ((𝑒 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑒) ∧ π‘Š)))
cdleme38.v 𝑉 = ((𝑑 ∨ 𝐸) ∧ π‘Š)
cdleme38.x 𝑋 = ((𝑒 ∨ 𝐷) ∧ π‘Š)
cdleme38.f 𝐹 = ((𝑅 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑅) ∧ π‘Š)))
cdleme38.g 𝐺 = ((𝑆 ∨ 𝑋) ∧ (𝐷 ∨ ((𝑒 ∨ 𝑆) ∧ π‘Š)))
Assertion
Ref Expression
cdleme38m ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 = 𝑆)

Proof of Theorem cdleme38m
StepHypRef Expression
1 simp1 1135 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
2 simp2 1136 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)))
3 simp311 1319 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
4 simp312 1320 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑆 ≀ (𝑃 ∨ 𝑄))
5 simp313 1321 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝐹 = 𝐺)
63, 4jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄)))
7 simp32 1209 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)))
8 simp33 1210 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))
9 cdleme38.l . . . . . 6 ≀ = (leβ€˜πΎ)
10 cdleme38.j . . . . . 6 ∨ = (joinβ€˜πΎ)
11 cdleme38.m . . . . . 6 ∧ = (meetβ€˜πΎ)
12 cdleme38.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
13 cdleme38.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
14 cdleme38.u . . . . . 6 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
15 cdleme38.e . . . . . 6 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
16 cdleme38.d . . . . . 6 𝐷 = ((𝑒 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑒) ∧ π‘Š)))
17 cdleme38.v . . . . . 6 𝑉 = ((𝑑 ∨ 𝐸) ∧ π‘Š)
18 cdleme38.x . . . . . 6 𝑋 = ((𝑒 ∨ 𝐷) ∧ π‘Š)
19 eqid 2731 . . . . . 6 ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š))) = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š)))
20 cdleme38.g . . . . . 6 𝐺 = ((𝑆 ∨ 𝑋) ∧ (𝐷 ∨ ((𝑒 ∨ 𝑆) ∧ π‘Š)))
219, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme37m 39637 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š))) = 𝐺)
221, 2, 6, 7, 8, 21syl113anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š))) = 𝐺)
235, 22eqtr4d 2774 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝐹 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š))))
243, 4, 233jca 1127 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š)))))
25 eqid 2731 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
26 cdleme38.f . . 3 𝐹 = ((𝑅 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑅) ∧ π‘Š)))
2725, 9, 10, 11, 12, 13, 14, 15, 17, 26, 19cdleme36m 39636 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = ((𝑆 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑑 ∨ 𝑆) ∧ π‘Š)))) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 = 𝑆)
281, 2, 24, 7, 27syl112anc 1373 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑑 ∈ 𝐴 ∧ Β¬ 𝑑 ≀ π‘Š) ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ∧ ((𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑅 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  Atomscatm 38437  HLchlt 38524  LHypclh 39159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163
This theorem is referenced by:  cdleme38n  39639
  Copyright terms: Public domain W3C validator