Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk12 Structured version   Visualization version   GIF version

Theorem cdlemk12 40177
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐡 = (Baseβ€˜πΎ)
cdlemk.l ≀ = (leβ€˜πΎ)
cdlemk.j ∨ = (joinβ€˜πΎ)
cdlemk.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk.h 𝐻 = (LHypβ€˜πΎ)
cdlemk.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk.m ∧ = (meetβ€˜πΎ)
cdlemk.s 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
Assertion
Ref Expression
cdlemk12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺)))))
Distinct variable groups:   ∧ ,𝑓   ∨ ,𝑓   𝑓,𝐹,𝑖   𝑓,𝐺,𝑖   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,π‘Š   ∧ ,𝑖   ≀ ,𝑖   ∨ ,𝑖   𝐴,𝑖   𝑖,𝐹   𝑖,𝐻   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝑇,𝑖   𝑖,π‘Š   𝑓,𝑋,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐡(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   ≀ (𝑓)

Proof of Theorem cdlemk12
StepHypRef Expression
1 simp11l 1281 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝐾 ∈ HL)
2 simp22l 1289 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝑃 ∈ 𝐴)
3 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simp13 1202 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝐺 ∈ 𝑇)
5 cdlemk.l . . . 4 ≀ = (leβ€˜πΎ)
6 cdlemk.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
7 cdlemk.h . . . 4 𝐻 = (LHypβ€˜πΎ)
8 cdlemk.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
95, 6, 7, 8ltrnat 39467 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
103, 4, 2, 9syl3anc 1368 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
11 simp12 1201 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝐹 ∈ 𝑇)
12 simp21r 1288 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝑋 ∈ 𝑇)
133, 11, 123jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇))
14 simp21l 1287 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝑁 ∈ 𝑇)
15 simp22 1204 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
16 simp23 1205 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
1714, 15, 163jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
18 simp311 1317 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
19 simp313 1319 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝑋 β‰  ( I β†Ύ 𝐡))
20 simp32r 1296 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))
21 cdlemk.b . . . 4 𝐡 = (Baseβ€˜πΎ)
22 cdlemk.j . . . 4 ∨ = (joinβ€˜πΎ)
23 cdlemk.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
24 cdlemk.m . . . 4 ∧ = (meetβ€˜πΎ)
25 cdlemk.s . . . 4 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
2621, 5, 22, 6, 7, 8, 23, 24, 25cdlemksat 40173 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴)
2713, 17, 18, 19, 20, 26syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴)
28 simp33 1208 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))
2928necomd 2988 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΊ))
306, 7, 8, 23trlcocnvat 40051 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΊ)) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐺)) ∈ 𝐴)
313, 12, 4, 29, 30syl121anc 1372 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐺)) ∈ 𝐴)
32 simp1 1133 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
33 simp312 1318 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
34 simp32l 1295 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))
3521, 5, 22, 6, 7, 8, 23, 24, 25cdlemksat 40173 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ∈ 𝐴)
3632, 17, 18, 33, 34, 35syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ∈ 𝐴)
3721, 5, 22, 6, 7, 8, 23, 24, 25cdlemksv2 40174 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
3832, 17, 18, 33, 34, 37syl113anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
391hllatd 38690 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ 𝐾 ∈ Lat)
4021, 6, 7, 8, 23trlnidat 39500 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
413, 4, 33, 40syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
4221, 22, 6hlatjcl 38693 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) ∈ 𝐡)
431, 2, 41, 42syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) ∈ 𝐡)
445, 6, 7, 8ltrnat 39467 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑁 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (π‘β€˜π‘ƒ) ∈ 𝐴)
453, 14, 2, 44syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘β€˜π‘ƒ) ∈ 𝐴)
466, 7, 8, 23trlcocnvat 40051 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
473, 4, 11, 34, 46syl121anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
4821, 22, 6hlatjcl 38693 . . . . . 6 ((𝐾 ∈ HL ∧ (π‘β€˜π‘ƒ) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴) β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐡)
491, 45, 47, 48syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐡)
5021, 5, 24latmle1 18418 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ (π‘…β€˜πΊ)) ∈ 𝐡 ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐡) β†’ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
5139, 43, 49, 50syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
5238, 51eqbrtrd 5160 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
535, 22, 6, 7, 8, 23trljat1 39493 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) = (𝑃 ∨ (πΊβ€˜π‘ƒ)))
543, 4, 15, 53syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) = (𝑃 ∨ (πΊβ€˜π‘ƒ)))
5552, 54breqtrd 5164 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ)))
56 simp2 1134 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
57 simp31 1206 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)))
58 eqid 2724 . . . 4 (((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))) = (((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹))))
5921, 5, 22, 6, 7, 8, 23, 24, 25, 58cdlemk11 40176 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))
6032, 56, 57, 34, 20, 59syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))
615, 22, 6hlatlej2 38702 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
621, 2, 41, 61syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
6362, 54breqtrd 5164 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ)))
6421, 5, 22, 6, 7, 8, 23, 24, 25cdlemksel 40172 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘†β€˜π‘‹) ∈ 𝑇)
6513, 17, 18, 19, 20, 64syl113anc 1379 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘†β€˜π‘‹) ∈ 𝑇)
665, 6, 7, 8ltrnel 39466 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘†β€˜π‘‹) ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ≀ π‘Š))
673, 65, 15, 66syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ≀ π‘Š))
687, 8ltrncnv 39473 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ ◑𝐺 ∈ 𝑇)
693, 4, 68syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ◑𝐺 ∈ 𝑇)
707, 8, 23trlcnv 39492 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΊ) = (π‘…β€˜πΊ))
713, 4, 70syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜β—‘πΊ) = (π‘…β€˜πΊ))
7271, 28eqnetrd 3000 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜β—‘πΊ) β‰  (π‘…β€˜π‘‹))
7321, 7, 8, 23trlcone 40055 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (◑𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((π‘…β€˜β—‘πΊ) β‰  (π‘…β€˜π‘‹) ∧ 𝑋 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜β—‘πΊ) β‰  (π‘…β€˜(◑𝐺 ∘ 𝑋)))
743, 69, 12, 72, 19, 73syl122anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜β—‘πΊ) β‰  (π‘…β€˜(◑𝐺 ∘ 𝑋)))
7574necomd 2988 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜(◑𝐺 ∘ 𝑋)) β‰  (π‘…β€˜β—‘πΊ))
767, 8ltrncom 40065 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ◑𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) β†’ (◑𝐺 ∘ 𝑋) = (𝑋 ∘ ◑𝐺))
773, 69, 12, 76syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (◑𝐺 ∘ 𝑋) = (𝑋 ∘ ◑𝐺))
7877fveq2d 6885 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜(◑𝐺 ∘ 𝑋)) = (π‘…β€˜(𝑋 ∘ ◑𝐺)))
7975, 78, 713netr3d 3009 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐺)) β‰  (π‘…β€˜πΊ))
807, 8ltrnco 40046 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ ◑𝐺 ∈ 𝑇) β†’ (𝑋 ∘ ◑𝐺) ∈ 𝑇)
813, 12, 69, 80syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝑋 ∘ ◑𝐺) ∈ 𝑇)
825, 7, 8, 23trlle 39511 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∘ ◑𝐺) ∈ 𝑇) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐺)) ≀ π‘Š)
833, 81, 82syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐺)) ≀ π‘Š)
845, 7, 8, 23trlle 39511 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
853, 4, 84syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
865, 22, 6, 7lhp2atnle 39360 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ≀ π‘Š) ∧ (π‘…β€˜(𝑋 ∘ ◑𝐺)) β‰  (π‘…β€˜πΊ)) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐺)) ∈ 𝐴 ∧ (π‘…β€˜(𝑋 ∘ ◑𝐺)) ≀ π‘Š) ∧ ((π‘…β€˜πΊ) ∈ 𝐴 ∧ (π‘…β€˜πΊ) ≀ π‘Š)) β†’ Β¬ (π‘…β€˜πΊ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))
873, 67, 79, 31, 83, 41, 85, 86syl322anc 1395 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ Β¬ (π‘…β€˜πΊ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))
88 nbrne1 5157 . . 3 (((π‘…β€˜πΊ) ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ Β¬ (π‘…β€˜πΊ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺)))) β†’ (𝑃 ∨ (πΊβ€˜π‘ƒ)) β‰  (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))
8963, 87, 88syl2anc 583 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ (𝑃 ∨ (πΊβ€˜π‘ƒ)) β‰  (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))
905, 22, 24, 62atm 38854 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (πΊβ€˜π‘ƒ) ∈ 𝐴) ∧ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴 ∧ (π‘…β€˜(𝑋 ∘ ◑𝐺)) ∈ 𝐴 ∧ ((π‘†β€˜πΊ)β€˜π‘ƒ) ∈ 𝐴) ∧ (((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))) ∧ (𝑃 ∨ (πΊβ€˜π‘ƒ)) β‰  (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺))))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺)))))
911, 2, 10, 27, 31, 36, 55, 60, 89, 90syl333anc 1399 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘‹))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138   ↦ cmpt 5221   I cid 5563  β—‘ccnv 5665   β†Ύ cres 5668   ∘ ccom 5670  β€˜cfv 6533  β„©crio 7356  (class class class)co 7401  Basecbs 17142  lecple 17202  joincjn 18265  meetcmee 18266  Latclat 18385  Atomscatm 38589  HLchlt 38676  LHypclh 39311  LTrncltrn 39428  trLctrl 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-riotaBAD 38279
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-undef 8253  df-map 8817  df-proset 18249  df-poset 18267  df-plt 18284  df-lub 18300  df-glb 18301  df-join 18302  df-meet 18303  df-p0 18379  df-p1 18380  df-lat 18386  df-clat 18453  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-llines 38825  df-lplanes 38826  df-lvols 38827  df-lines 38828  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315  df-laut 39316  df-ldil 39431  df-ltrn 39432  df-trl 39486
This theorem is referenced by:  cdlemk21N  40200  cdlemk20  40201
  Copyright terms: Public domain W3C validator