Proof of Theorem cdlemk12
| Step | Hyp | Ref
| Expression |
| 1 | | simp11l 1285 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝐾 ∈ HL) |
| 2 | | simp22l 1293 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝑃 ∈ 𝐴) |
| 3 | | simp11 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 4 | | simp13 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝐺 ∈ 𝑇) |
| 5 | | cdlemk.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 6 | | cdlemk.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 7 | | cdlemk.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 8 | | cdlemk.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 9 | 5, 6, 7, 8 | ltrnat 40164 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
| 10 | 3, 4, 2, 9 | syl3anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝐺‘𝑃) ∈ 𝐴) |
| 11 | | simp12 1205 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝐹 ∈ 𝑇) |
| 12 | | simp21r 1292 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝑋 ∈ 𝑇) |
| 13 | 3, 11, 12 | 3jca 1128 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇)) |
| 14 | | simp21l 1291 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝑁 ∈ 𝑇) |
| 15 | | simp22 1208 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 16 | | simp23 1209 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
| 17 | 14, 15, 16 | 3jca 1128 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
| 18 | | simp311 1321 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝐹 ≠ ( I ↾ 𝐵)) |
| 19 | | simp313 1323 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝑋 ≠ ( I ↾ 𝐵)) |
| 20 | | simp32r 1300 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝑋) ≠ (𝑅‘𝐹)) |
| 21 | | cdlemk.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 22 | | cdlemk.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 23 | | cdlemk.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 24 | | cdlemk.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 25 | | cdlemk.s |
. . . 4
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
| 26 | 21, 5, 22, 6, 7, 8,
23, 24, 25 | cdlemksat 40870 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐴) |
| 27 | 13, 17, 18, 19, 20, 26 | syl113anc 1384 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐴) |
| 28 | | simp33 1212 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐺) ≠ (𝑅‘𝑋)) |
| 29 | 28 | necomd 2988 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝑋) ≠ (𝑅‘𝐺)) |
| 30 | 6, 7, 8, 23 | trlcocnvat 40748 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐺)) → (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐴) |
| 31 | 3, 12, 4, 29, 30 | syl121anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐴) |
| 32 | | simp1 1136 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
| 33 | | simp312 1322 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝐺 ≠ ( I ↾ 𝐵)) |
| 34 | | simp32l 1299 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) |
| 35 | 21, 5, 22, 6, 7, 8,
23, 24, 25 | cdlemksat 40870 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ∈ 𝐴) |
| 36 | 32, 17, 18, 33, 34, 35 | syl113anc 1384 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝐺)‘𝑃) ∈ 𝐴) |
| 37 | 21, 5, 22, 6, 7, 8,
23, 24, 25 | cdlemksv2 40871 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 38 | 32, 17, 18, 33, 34, 37 | syl113anc 1384 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 39 | 1 | hllatd 39387 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → 𝐾 ∈ Lat) |
| 40 | 21, 6, 7, 8, 23 | trlnidat 40197 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐺) ∈ 𝐴) |
| 41 | 3, 4, 33, 40 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐺) ∈ 𝐴) |
| 42 | 21, 22, 6 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝑅‘𝐺) ∈ 𝐴) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
| 43 | 1, 2, 41, 42 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
| 44 | 5, 6, 7, 8 | ltrnat 40164 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑁 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑁‘𝑃) ∈ 𝐴) |
| 45 | 3, 14, 2, 44 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑁‘𝑃) ∈ 𝐴) |
| 46 | 6, 7, 8, 23 | trlcocnvat 40748 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
| 47 | 3, 4, 11, 34, 46 | syl121anc 1377 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
| 48 | 21, 22, 6 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑁‘𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) → ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 49 | 1, 45, 47, 48 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 50 | 21, 5, 24 | latmle1 18479 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵 ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 51 | 39, 43, 49, 50 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 52 | 38, 51 | eqbrtrd 5146 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 53 | 5, 22, 6, 7, 8, 23 | trljat1 40190 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐺)) = (𝑃 ∨ (𝐺‘𝑃))) |
| 54 | 3, 4, 15, 53 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑃 ∨ (𝑅‘𝐺)) = (𝑃 ∨ (𝐺‘𝑃))) |
| 55 | 52, 54 | breqtrd 5150 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝐺‘𝑃))) |
| 56 | | simp2 1137 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
| 57 | | simp31 1210 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵))) |
| 58 | | eqid 2736 |
. . . 4
⊢ (((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) = (((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
| 59 | 21, 5, 22, 6, 7, 8,
23, 24, 25, 58 | cdlemk11 40873 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
| 60 | 32, 56, 57, 34, 20, 59 | syl113anc 1384 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝐺)‘𝑃) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
| 61 | 5, 22, 6 | hlatlej2 39399 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝑅‘𝐺) ∈ 𝐴) → (𝑅‘𝐺) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 62 | 1, 2, 41, 61 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐺) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 63 | 62, 54 | breqtrd 5150 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐺) ≤ (𝑃 ∨ (𝐺‘𝑃))) |
| 64 | 21, 5, 22, 6, 7, 8,
23, 24, 25 | cdlemksel 40869 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑆‘𝑋) ∈ 𝑇) |
| 65 | 13, 17, 18, 19, 20, 64 | syl113anc 1384 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑆‘𝑋) ∈ 𝑇) |
| 66 | 5, 6, 7, 8 | ltrnel 40163 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑋) ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑆‘𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆‘𝑋)‘𝑃) ≤ 𝑊)) |
| 67 | 3, 65, 15, 66 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (((𝑆‘𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆‘𝑋)‘𝑃) ≤ 𝑊)) |
| 68 | 7, 8 | ltrncnv 40170 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
| 69 | 3, 4, 68 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ◡𝐺 ∈ 𝑇) |
| 70 | 7, 8, 23 | trlcnv 40189 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘◡𝐺) = (𝑅‘𝐺)) |
| 71 | 3, 4, 70 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘◡𝐺) = (𝑅‘𝐺)) |
| 72 | 71, 28 | eqnetrd 3000 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘◡𝐺) ≠ (𝑅‘𝑋)) |
| 73 | 21, 7, 8, 23 | trlcone 40752 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ ((𝑅‘◡𝐺) ≠ (𝑅‘𝑋) ∧ 𝑋 ≠ ( I ↾ 𝐵))) → (𝑅‘◡𝐺) ≠ (𝑅‘(◡𝐺 ∘ 𝑋))) |
| 74 | 3, 69, 12, 72, 19, 73 | syl122anc 1381 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘◡𝐺) ≠ (𝑅‘(◡𝐺 ∘ 𝑋))) |
| 75 | 74 | necomd 2988 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘(◡𝐺 ∘ 𝑋)) ≠ (𝑅‘◡𝐺)) |
| 76 | 7, 8 | ltrncom 40762 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) → (◡𝐺 ∘ 𝑋) = (𝑋 ∘ ◡𝐺)) |
| 77 | 3, 69, 12, 76 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (◡𝐺 ∘ 𝑋) = (𝑋 ∘ ◡𝐺)) |
| 78 | 77 | fveq2d 6885 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘(◡𝐺 ∘ 𝑋)) = (𝑅‘(𝑋 ∘ ◡𝐺))) |
| 79 | 75, 78, 71 | 3netr3d 3009 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘(𝑋 ∘ ◡𝐺)) ≠ (𝑅‘𝐺)) |
| 80 | 7, 8 | ltrnco 40743 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ ◡𝐺 ∈ 𝑇) → (𝑋 ∘ ◡𝐺) ∈ 𝑇) |
| 81 | 3, 12, 69, 80 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑋 ∘ ◡𝐺) ∈ 𝑇) |
| 82 | 5, 7, 8, 23 | trlle 40208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∘ ◡𝐺) ∈ 𝑇) → (𝑅‘(𝑋 ∘ ◡𝐺)) ≤ 𝑊) |
| 83 | 3, 81, 82 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘(𝑋 ∘ ◡𝐺)) ≤ 𝑊) |
| 84 | 5, 7, 8, 23 | trlle 40208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ≤ 𝑊) |
| 85 | 3, 4, 84 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑅‘𝐺) ≤ 𝑊) |
| 86 | 5, 22, 6, 7 | lhp2atnle 40057 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝑆‘𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆‘𝑋)‘𝑃) ≤ 𝑊) ∧ (𝑅‘(𝑋 ∘ ◡𝐺)) ≠ (𝑅‘𝐺)) ∧ ((𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐴 ∧ (𝑅‘(𝑋 ∘ ◡𝐺)) ≤ 𝑊) ∧ ((𝑅‘𝐺) ∈ 𝐴 ∧ (𝑅‘𝐺) ≤ 𝑊)) → ¬ (𝑅‘𝐺) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
| 87 | 3, 67, 79, 31, 83, 41, 85, 86 | syl322anc 1400 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ¬ (𝑅‘𝐺) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
| 88 | | nbrne1 5143 |
. . 3
⊢ (((𝑅‘𝐺) ≤ (𝑃 ∨ (𝐺‘𝑃)) ∧ ¬ (𝑅‘𝐺) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) → (𝑃 ∨ (𝐺‘𝑃)) ≠ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
| 89 | 63, 87, 88 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → (𝑃 ∨ (𝐺‘𝑃)) ≠ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
| 90 | 5, 22, 24, 6 | 2atm 39551 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴) ∧ (((𝑆‘𝑋)‘𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐴 ∧ ((𝑆‘𝐺)‘𝑃) ∈ 𝐴) ∧ (((𝑆‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝐺‘𝑃)) ∧ ((𝑆‘𝐺)‘𝑃) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))) ∧ (𝑃 ∨ (𝐺‘𝑃)) ≠ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))))) |
| 91 | 1, 2, 10, 27, 31, 36, 55, 60, 89, 90 | syl333anc 1404 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑋))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))))) |