Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk12 Structured version   Visualization version   GIF version

Theorem cdlemk12 38864
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
Assertion
Ref Expression
cdlemk12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Distinct variable groups:   ,𝑓   ,𝑓   𝑓,𝐹,𝑖   𝑓,𝐺,𝑖   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   ,𝑖   ,𝑖   ,𝑖   𝐴,𝑖   𝑖,𝐹   𝑖,𝐻   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝑇,𝑖   𝑖,𝑊   𝑓,𝑋,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)

Proof of Theorem cdlemk12
StepHypRef Expression
1 simp11l 1283 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐾 ∈ HL)
2 simp22l 1291 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑃𝐴)
3 simp11 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐺𝑇)
5 cdlemk.l . . . 4 = (le‘𝐾)
6 cdlemk.a . . . 4 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . 4 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 38154 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
103, 4, 2, 9syl3anc 1370 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐺𝑃) ∈ 𝐴)
11 simp12 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐹𝑇)
12 simp21r 1290 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑋𝑇)
133, 11, 123jca 1127 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇))
14 simp21l 1289 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑁𝑇)
15 simp22 1206 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
16 simp23 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐹) = (𝑅𝑁))
1714, 15, 163jca 1127 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
18 simp311 1319 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐹 ≠ ( I ↾ 𝐵))
19 simp313 1321 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑋 ≠ ( I ↾ 𝐵))
20 simp32r 1298 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝑋) ≠ (𝑅𝐹))
21 cdlemk.b . . . 4 𝐵 = (Base‘𝐾)
22 cdlemk.j . . . 4 = (join‘𝐾)
23 cdlemk.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
24 cdlemk.m . . . 4 = (meet‘𝐾)
25 cdlemk.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
2621, 5, 22, 6, 7, 8, 23, 24, 25cdlemksat 38860 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) ∈ 𝐴)
2713, 17, 18, 19, 20, 26syl113anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝑋)‘𝑃) ∈ 𝐴)
28 simp33 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅𝑋))
2928necomd 2999 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝑋) ≠ (𝑅𝐺))
306, 7, 8, 23trlcocnvat 38738 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝐺𝑇) ∧ (𝑅𝑋) ≠ (𝑅𝐺)) → (𝑅‘(𝑋𝐺)) ∈ 𝐴)
313, 12, 4, 29, 30syl121anc 1374 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝑋𝐺)) ∈ 𝐴)
32 simp1 1135 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇))
33 simp312 1320 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐺 ≠ ( I ↾ 𝐵))
34 simp32l 1297 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅𝐹))
3521, 5, 22, 6, 7, 8, 23, 24, 25cdlemksat 38860 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) ∈ 𝐴)
3632, 17, 18, 33, 34, 35syl113anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) ∈ 𝐴)
3721, 5, 22, 6, 7, 8, 23, 24, 25cdlemksv2 38861 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
3832, 17, 18, 33, 34, 37syl113anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
391hllatd 37378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐾 ∈ Lat)
4021, 6, 7, 8, 23trlnidat 38187 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
413, 4, 33, 40syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ∈ 𝐴)
4221, 22, 6hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
431, 2, 41, 42syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
445, 6, 7, 8ltrnat 38154 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇𝑃𝐴) → (𝑁𝑃) ∈ 𝐴)
453, 14, 2, 44syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑁𝑃) ∈ 𝐴)
466, 7, 8, 23trlcocnvat 38738 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
473, 4, 11, 34, 46syl121anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
4821, 22, 6hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑁𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) → ((𝑁𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
491, 45, 47, 48syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑁𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
5021, 5, 24latmle1 18182 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ ((𝑁𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵) → ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) (𝑃 (𝑅𝐺)))
5139, 43, 49, 50syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) (𝑃 (𝑅𝐺)))
5238, 51eqbrtrd 5096 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
535, 22, 6, 7, 8, 23trljat1 38180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
543, 4, 15, 53syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
5552, 54breqtrd 5100 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) (𝑃 (𝐺𝑃)))
56 simp2 1136 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
57 simp31 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)))
58 eqid 2738 . . . 4 (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))
5921, 5, 22, 6, 7, 8, 23, 24, 25, 58cdlemk11 38863 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
6032, 56, 57, 34, 20, 59syl113anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
615, 22, 6hlatlej2 37390 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
621, 2, 41, 61syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
6362, 54breqtrd 5100 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) (𝑃 (𝐺𝑃)))
6421, 5, 22, 6, 7, 8, 23, 24, 25cdlemksel 38859 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑆𝑋) ∈ 𝑇)
6513, 17, 18, 19, 20, 64syl113anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑆𝑋) ∈ 𝑇)
665, 6, 7, 8ltrnel 38153 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑋) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆𝑋)‘𝑃) 𝑊))
673, 65, 15, 66syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆𝑋)‘𝑃) 𝑊))
687, 8ltrncnv 38160 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
693, 4, 68syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐺𝑇)
707, 8, 23trlcnv 38179 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) = (𝑅𝐺))
713, 4, 70syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) = (𝑅𝐺))
7271, 28eqnetrd 3011 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅𝑋))
7321, 7, 8, 23trlcone 38742 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝑋 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝑋)))
743, 69, 12, 72, 19, 73syl122anc 1378 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝑋)))
7574necomd 2999 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝐺𝑋)) ≠ (𝑅𝐺))
767, 8ltrncom 38752 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑋𝑇) → (𝐺𝑋) = (𝑋𝐺))
773, 69, 12, 76syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐺𝑋) = (𝑋𝐺))
7877fveq2d 6778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝐺𝑋)) = (𝑅‘(𝑋𝐺)))
7975, 78, 713netr3d 3020 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝑋𝐺)) ≠ (𝑅𝐺))
807, 8ltrnco 38733 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐺𝑇) → (𝑋𝐺) ∈ 𝑇)
813, 12, 69, 80syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑋𝐺) ∈ 𝑇)
825, 7, 8, 23trlle 38198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐺) ∈ 𝑇) → (𝑅‘(𝑋𝐺)) 𝑊)
833, 81, 82syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝑋𝐺)) 𝑊)
845, 7, 8, 23trlle 38198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
853, 4, 84syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) 𝑊)
865, 22, 6, 7lhp2atnle 38047 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆𝑋)‘𝑃) 𝑊) ∧ (𝑅‘(𝑋𝐺)) ≠ (𝑅𝐺)) ∧ ((𝑅‘(𝑋𝐺)) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) 𝑊) ∧ ((𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐺) 𝑊)) → ¬ (𝑅𝐺) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
873, 67, 79, 31, 83, 41, 85, 86syl322anc 1397 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ¬ (𝑅𝐺) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
88 nbrne1 5093 . . 3 (((𝑅𝐺) (𝑃 (𝐺𝑃)) ∧ ¬ (𝑅𝐺) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))) → (𝑃 (𝐺𝑃)) ≠ (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
8963, 87, 88syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃 (𝐺𝑃)) ≠ (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
905, 22, 24, 62atm 37541 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) ∧ (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) ∈ 𝐴 ∧ ((𝑆𝐺)‘𝑃) ∈ 𝐴) ∧ (((𝑆𝐺)‘𝑃) (𝑃 (𝐺𝑃)) ∧ ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))) ∧ (𝑃 (𝐺𝑃)) ≠ (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
911, 2, 10, 27, 31, 36, 55, 60, 89, 90syl333anc 1401 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157   I cid 5488  ccnv 5588  cres 5591  ccom 5593  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemk21N  38887  cdlemk20  38888
  Copyright terms: Public domain W3C validator