Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk12 Structured version   Visualization version   GIF version

Theorem cdlemk12 36988
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
Assertion
Ref Expression
cdlemk12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Distinct variable groups:   ,𝑓   ,𝑓   𝑓,𝐹,𝑖   𝑓,𝐺,𝑖   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   ,𝑖   ,𝑖   ,𝑖   𝐴,𝑖   𝑖,𝐹   𝑖,𝐻   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝑇,𝑖   𝑖,𝑊   𝑓,𝑋,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)

Proof of Theorem cdlemk12
StepHypRef Expression
1 simp11l 1340 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐾 ∈ HL)
2 simp22l 1348 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑃𝐴)
3 simp11 1217 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1219 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐺𝑇)
5 cdlemk.l . . . 4 = (le‘𝐾)
6 cdlemk.a . . . 4 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . 4 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 36278 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
103, 4, 2, 9syl3anc 1439 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐺𝑃) ∈ 𝐴)
11 simp12 1218 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐹𝑇)
12 simp21r 1347 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑋𝑇)
133, 11, 123jca 1119 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇))
14 simp21l 1346 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑁𝑇)
15 simp22 1221 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
16 simp23 1222 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐹) = (𝑅𝑁))
1714, 15, 163jca 1119 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
18 simp311 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐹 ≠ ( I ↾ 𝐵))
19 simp313 1378 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝑋 ≠ ( I ↾ 𝐵))
20 simp32r 1355 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝑋) ≠ (𝑅𝐹))
21 cdlemk.b . . . 4 𝐵 = (Base‘𝐾)
22 cdlemk.j . . . 4 = (join‘𝐾)
23 cdlemk.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
24 cdlemk.m . . . 4 = (meet‘𝐾)
25 cdlemk.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
2621, 5, 22, 6, 7, 8, 23, 24, 25cdlemksat 36984 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) ∈ 𝐴)
2713, 17, 18, 19, 20, 26syl113anc 1450 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝑋)‘𝑃) ∈ 𝐴)
28 simp33 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅𝑋))
2928necomd 3023 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝑋) ≠ (𝑅𝐺))
306, 7, 8, 23trlcocnvat 36862 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝐺𝑇) ∧ (𝑅𝑋) ≠ (𝑅𝐺)) → (𝑅‘(𝑋𝐺)) ∈ 𝐴)
313, 12, 4, 29, 30syl121anc 1443 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝑋𝐺)) ∈ 𝐴)
32 simp1 1127 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇))
33 simp312 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐺 ≠ ( I ↾ 𝐵))
34 simp32l 1354 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅𝐹))
3521, 5, 22, 6, 7, 8, 23, 24, 25cdlemksat 36984 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) ∈ 𝐴)
3632, 17, 18, 33, 34, 35syl113anc 1450 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) ∈ 𝐴)
3721, 5, 22, 6, 7, 8, 23, 24, 25cdlemksv2 36985 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
3832, 17, 18, 33, 34, 37syl113anc 1450 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
391hllatd 35502 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐾 ∈ Lat)
4021, 6, 7, 8, 23trlnidat 36311 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
413, 4, 33, 40syl3anc 1439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ∈ 𝐴)
4221, 22, 6hlatjcl 35505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
431, 2, 41, 42syl3anc 1439 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
445, 6, 7, 8ltrnat 36278 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇𝑃𝐴) → (𝑁𝑃) ∈ 𝐴)
453, 14, 2, 44syl3anc 1439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑁𝑃) ∈ 𝐴)
466, 7, 8, 23trlcocnvat 36862 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
473, 4, 11, 34, 46syl121anc 1443 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
4821, 22, 6hlatjcl 35505 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑁𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) → ((𝑁𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
491, 45, 47, 48syl3anc 1439 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑁𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
5021, 5, 24latmle1 17462 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ ((𝑁𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵) → ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) (𝑃 (𝑅𝐺)))
5139, 43, 49, 50syl3anc 1439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) (𝑃 (𝑅𝐺)))
5238, 51eqbrtrd 4908 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
535, 22, 6, 7, 8, 23trljat1 36304 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
543, 4, 15, 53syl3anc 1439 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
5552, 54breqtrd 4912 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) (𝑃 (𝐺𝑃)))
56 simp2 1128 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
57 simp31 1223 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)))
58 eqid 2777 . . . 4 (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))
5921, 5, 22, 6, 7, 8, 23, 24, 25, 58cdlemk11 36987 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
6032, 56, 57, 34, 20, 59syl113anc 1450 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
615, 22, 6hlatlej2 35514 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
621, 2, 41, 61syl3anc 1439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
6362, 54breqtrd 4912 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) (𝑃 (𝐺𝑃)))
6421, 5, 22, 6, 7, 8, 23, 24, 25cdlemksel 36983 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑆𝑋) ∈ 𝑇)
6513, 17, 18, 19, 20, 64syl113anc 1450 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑆𝑋) ∈ 𝑇)
665, 6, 7, 8ltrnel 36277 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑋) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆𝑋)‘𝑃) 𝑊))
673, 65, 15, 66syl3anc 1439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆𝑋)‘𝑃) 𝑊))
687, 8ltrncnv 36284 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
693, 4, 68syl2anc 579 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → 𝐺𝑇)
707, 8, 23trlcnv 36303 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) = (𝑅𝐺))
713, 4, 70syl2anc 579 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) = (𝑅𝐺))
7271, 28eqnetrd 3035 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅𝑋))
7321, 7, 8, 23trlcone 36866 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝑋 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝑋)))
743, 69, 12, 72, 19, 73syl122anc 1447 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝑋)))
7574necomd 3023 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝐺𝑋)) ≠ (𝑅𝐺))
767, 8ltrncom 36876 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑋𝑇) → (𝐺𝑋) = (𝑋𝐺))
773, 69, 12, 76syl3anc 1439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝐺𝑋) = (𝑋𝐺))
7877fveq2d 6450 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝐺𝑋)) = (𝑅‘(𝑋𝐺)))
7975, 78, 713netr3d 3044 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝑋𝐺)) ≠ (𝑅𝐺))
807, 8ltrnco 36857 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐺𝑇) → (𝑋𝐺) ∈ 𝑇)
813, 12, 69, 80syl3anc 1439 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑋𝐺) ∈ 𝑇)
825, 7, 8, 23trlle 36322 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐺) ∈ 𝑇) → (𝑅‘(𝑋𝐺)) 𝑊)
833, 81, 82syl2anc 579 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅‘(𝑋𝐺)) 𝑊)
845, 7, 8, 23trlle 36322 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
853, 4, 84syl2anc 579 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑅𝐺) 𝑊)
865, 22, 6, 7lhp2atnle 36171 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑆𝑋)‘𝑃) 𝑊) ∧ (𝑅‘(𝑋𝐺)) ≠ (𝑅𝐺)) ∧ ((𝑅‘(𝑋𝐺)) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) 𝑊) ∧ ((𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐺) 𝑊)) → ¬ (𝑅𝐺) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
873, 67, 79, 31, 83, 41, 85, 86syl322anc 1466 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ¬ (𝑅𝐺) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
88 nbrne1 4905 . . 3 (((𝑅𝐺) (𝑃 (𝐺𝑃)) ∧ ¬ (𝑅𝐺) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))) → (𝑃 (𝐺𝑃)) ≠ (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
8963, 87, 88syl2anc 579 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → (𝑃 (𝐺𝑃)) ≠ (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
905, 22, 24, 62atm 35665 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) ∧ (((𝑆𝑋)‘𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) ∈ 𝐴 ∧ ((𝑆𝐺)‘𝑃) ∈ 𝐴) ∧ (((𝑆𝐺)‘𝑃) (𝑃 (𝐺𝑃)) ∧ ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))) ∧ (𝑃 (𝐺𝑃)) ≠ (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
911, 2, 10, 27, 31, 36, 55, 60, 89, 90syl333anc 1470 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968   class class class wbr 4886  cmpt 4965   I cid 5260  ccnv 5354  cres 5357  ccom 5359  cfv 6135  crio 6882  (class class class)co 6922  Basecbs 16255  lecple 16345  joincjn 17330  meetcmee 17331  Latclat 17431  Atomscatm 35401  HLchlt 35488  LHypclh 36122  LTrncltrn 36239  trLctrl 36296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-riotaBAD 35091
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-undef 7681  df-map 8142  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35636  df-lplanes 35637  df-lvols 35638  df-lines 35639  df-psubsp 35641  df-pmap 35642  df-padd 35934  df-lhyp 36126  df-laut 36127  df-ldil 36242  df-ltrn 36243  df-trl 36297
This theorem is referenced by:  cdlemk21N  37011  cdlemk20  37012
  Copyright terms: Public domain W3C validator