Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme38n Structured version   Visualization version   GIF version

Theorem cdleme38n 38478
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. TODO shorter if proved directly from cdleme36m 38475 and cdleme37m 38476? (Contributed by NM, 14-Mar-2013.)
Hypotheses
Ref Expression
cdleme38.l = (le‘𝐾)
cdleme38.j = (join‘𝐾)
cdleme38.m = (meet‘𝐾)
cdleme38.a 𝐴 = (Atoms‘𝐾)
cdleme38.h 𝐻 = (LHyp‘𝐾)
cdleme38.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme38.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme38.d 𝐷 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme38.v 𝑉 = ((𝑡 𝐸) 𝑊)
cdleme38.x 𝑋 = ((𝑢 𝐷) 𝑊)
cdleme38.f 𝐹 = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊)))
cdleme38.g 𝐺 = ((𝑆 𝑋) (𝐷 ((𝑢 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme38n ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐹𝐺)

Proof of Theorem cdleme38n
StepHypRef Expression
1 simp313 1321 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑅𝑆)
2 simpl1 1190 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
3 simpl21 1250 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → 𝑃𝑄)
4 simpl22 1251 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
5 simpl23 1252 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
6 simp311 1319 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑅 (𝑃 𝑄))
76adantr 481 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → 𝑅 (𝑃 𝑄))
8 simp312 1320 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
98adantr 481 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → 𝑆 (𝑃 𝑄))
10 simpr 485 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺)
117, 9, 103jca 1127 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺))
12 simpl32 1254 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))
13 simpl33 1255 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))
14 cdleme38.l . . . . . 6 = (le‘𝐾)
15 cdleme38.j . . . . . 6 = (join‘𝐾)
16 cdleme38.m . . . . . 6 = (meet‘𝐾)
17 cdleme38.a . . . . . 6 𝐴 = (Atoms‘𝐾)
18 cdleme38.h . . . . . 6 𝐻 = (LHyp‘𝐾)
19 cdleme38.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
20 cdleme38.e . . . . . 6 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
21 cdleme38.d . . . . . 6 𝐷 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
22 cdleme38.v . . . . . 6 𝑉 = ((𝑡 𝐸) 𝑊)
23 cdleme38.x . . . . . 6 𝑋 = ((𝑢 𝐷) 𝑊)
24 cdleme38.f . . . . . 6 𝐹 = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊)))
25 cdleme38.g . . . . . 6 𝐺 = ((𝑆 𝑋) (𝐷 ((𝑢 𝑆) 𝑊)))
2614, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25cdleme38m 38477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑅 = 𝑆)
272, 3, 4, 5, 11, 12, 13, 26syl133anc 1392 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) ∧ 𝐹 = 𝐺) → 𝑅 = 𝑆)
2827ex 413 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝐹 = 𝐺𝑅 = 𝑆))
2928necon3d 2964 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑅𝑆𝐹𝐺))
301, 29mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐹𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002
This theorem is referenced by:  cdleme39n  38480
  Copyright terms: Public domain W3C validator