Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme39n Structured version   Visualization version   GIF version

Theorem cdleme39n 38103
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. 𝐸, 𝑌, 𝐺, 𝑍 serve as f(t), f(u), ft(𝑅), ft(𝑆). Put hypotheses of cdleme38n 38101 in convention of cdleme32sn1awN 38069. TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013.)
Hypotheses
Ref Expression
cdleme39.l = (le‘𝐾)
cdleme39.j = (join‘𝐾)
cdleme39.m = (meet‘𝐾)
cdleme39.a 𝐴 = (Atoms‘𝐾)
cdleme39.h 𝐻 = (LHyp‘𝐾)
cdleme39.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme39.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme39.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme39.y 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme39.z 𝑍 = ((𝑃 𝑄) (𝑌 ((𝑆 𝑢) 𝑊)))
Assertion
Ref Expression
cdleme39n ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐺𝑍)

Proof of Theorem cdleme39n
StepHypRef Expression
1 cdleme39.l . . 3 = (le‘𝐾)
2 cdleme39.j . . 3 = (join‘𝐾)
3 cdleme39.m . . 3 = (meet‘𝐾)
4 cdleme39.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdleme39.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdleme39.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme39.e . . 3 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
8 cdleme39.y . . 3 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
9 eqid 2738 . . 3 ((𝑡 𝐸) 𝑊) = ((𝑡 𝐸) 𝑊)
10 eqid 2738 . . 3 ((𝑢 𝑌) 𝑊) = ((𝑢 𝑌) 𝑊)
11 eqid 2738 . . 3 ((𝑅 ((𝑡 𝐸) 𝑊)) (𝐸 ((𝑡 𝑅) 𝑊))) = ((𝑅 ((𝑡 𝐸) 𝑊)) (𝐸 ((𝑡 𝑅) 𝑊)))
12 eqid 2738 . . 3 ((𝑆 ((𝑢 𝑌) 𝑊)) (𝑌 ((𝑢 𝑆) 𝑊))) = ((𝑆 ((𝑢 𝑌) 𝑊)) (𝑌 ((𝑢 𝑆) 𝑊)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme38n 38101 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ((𝑅 ((𝑡 𝐸) 𝑊)) (𝐸 ((𝑡 𝑅) 𝑊))) ≠ ((𝑆 ((𝑢 𝑌) 𝑊)) (𝑌 ((𝑢 𝑆) 𝑊))))
14 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp12l 1287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑃𝐴)
16 simp13l 1289 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑄𝐴)
17 simp22l 1293 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑅𝐴)
18 simp22r 1294 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ¬ 𝑅 𝑊)
19 simp311 1321 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑅 (𝑃 𝑄))
20 simp32l 1299 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
21 cdleme39.g . . . 4 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
221, 2, 3, 4, 5, 6, 7, 21, 9cdleme39a 38102 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝐺 = ((𝑅 ((𝑡 𝐸) 𝑊)) (𝐸 ((𝑡 𝑅) 𝑊))))
2314, 15, 16, 17, 18, 19, 20, 22syl322anc 1399 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐺 = ((𝑅 ((𝑡 𝐸) 𝑊)) (𝐸 ((𝑡 𝑅) 𝑊))))
24 simp23l 1295 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑆𝐴)
25 simp23r 1296 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → ¬ 𝑆 𝑊)
26 simp312 1322 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
27 simp33l 1301 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → (𝑢𝐴 ∧ ¬ 𝑢 𝑊))
28 cdleme39.z . . . 4 𝑍 = ((𝑃 𝑄) (𝑌 ((𝑆 𝑢) 𝑊)))
291, 2, 3, 4, 5, 6, 8, 28, 10cdleme39a 38102 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑃 𝑄) ∧ (𝑢𝐴 ∧ ¬ 𝑢 𝑊))) → 𝑍 = ((𝑆 ((𝑢 𝑌) 𝑊)) (𝑌 ((𝑢 𝑆) 𝑊))))
3014, 15, 16, 24, 25, 26, 27, 29syl322anc 1399 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝑍 = ((𝑆 ((𝑢 𝑌) 𝑊)) (𝑌 ((𝑢 𝑆) 𝑊))))
3113, 23, 303netr4d 3011 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑢𝐴 ∧ ¬ 𝑢 𝑊) ∧ ¬ 𝑢 (𝑃 𝑄)))) → 𝐺𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  (class class class)co 7170  lecple 16675  joincjn 17670  meetcmee 17671  Atomscatm 36900  HLchlt 36987  LHypclh 37621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625
This theorem is referenced by:  cdleme40m  38104
  Copyright terms: Public domain W3C validator