Proof of Theorem cdleme26e
| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp12 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 3 | | simp13 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 4 | | simp21l 1291 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑆 ∈ 𝐴) |
| 5 | | simp22l 1293 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑇 ∈ 𝐴) |
| 6 | 4, 5 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) |
| 7 | | simp23 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
| 8 | | simp311 1321 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑃 ≠ 𝑄) |
| 9 | | simp32l 1299 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) |
| 10 | 8, 9 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑃 ≠ 𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄))) |
| 11 | | simp33 1212 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)) |
| 12 | | cdleme26.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 13 | | cdleme26.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 14 | | cdleme26.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 15 | | cdleme26.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 16 | | cdleme26.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 17 | | cdleme26e.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 18 | | cdleme26e.f |
. . . 4
⊢ 𝐹 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
| 19 | | cdleme26e.n |
. . . 4
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑧) ∧ 𝑊))) |
| 20 | | cdleme26e.o |
. . . 4
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
| 21 | 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdleme22e 40346 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑁 ≤ (𝑂 ∨ 𝑉)) |
| 22 | 1, 2, 3, 6, 7, 10,
11, 21 | syl133anc 1395 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑁 ≤ (𝑂 ∨ 𝑉)) |
| 23 | | simp21r 1292 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → ¬ 𝑆 ≤ 𝑊) |
| 24 | | simp312 1322 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 25 | | cdleme26.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 26 | | cdleme26e.i |
. . . . 5
⊢ 𝐼 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
| 27 | 25, 12, 13, 14, 15, 16, 17, 18, 19, 26 | cdleme25cl 40359 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐼 ∈ 𝐵) |
| 28 | 1, 2, 3, 4, 23, 8,
24, 27 | syl322anc 1400 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝐼 ∈ 𝐵) |
| 29 | | simp33l 1301 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑧 ∈ 𝐴) |
| 30 | | simp33r 1302 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → ¬ 𝑧 ≤ 𝑊) |
| 31 | | simp32r 1300 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) |
| 32 | 30, 31 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) |
| 33 | 25 | fvexi 6920 |
. . . 4
⊢ 𝐵 ∈ V |
| 34 | 33, 26 | riotasv 38960 |
. . 3
⊢ ((𝐼 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ (¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) → 𝐼 = 𝑁) |
| 35 | 28, 29, 32, 34 | syl3anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝐼 = 𝑁) |
| 36 | | simp22r 1294 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → ¬ 𝑇 ≤ 𝑊) |
| 37 | | simp313 1323 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝑇 ≤ (𝑃 ∨ 𝑄)) |
| 38 | | cdleme26e.e |
. . . . . 6
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
| 39 | 25, 12, 13, 14, 15, 16, 17, 18, 20, 38 | cdleme25cl 40359 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → 𝐸 ∈ 𝐵) |
| 40 | 1, 2, 3, 5, 36, 8,
37, 39 | syl322anc 1400 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝐸 ∈ 𝐵) |
| 41 | 33, 38 | riotasv 38960 |
. . . 4
⊢ ((𝐸 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ (¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) → 𝐸 = 𝑂) |
| 42 | 40, 29, 32, 41 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝐸 = 𝑂) |
| 43 | 42 | oveq1d 7446 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → (𝐸 ∨ 𝑉) = (𝑂 ∨ 𝑉)) |
| 44 | 22, 35, 43 | 3brtr4d 5175 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ((𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄) ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) → 𝐼 ≤ (𝐸 ∨ 𝑉)) |