Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemqnet | Structured version Visualization version GIF version |
Description: Lemma for dath 37955. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalemqnet | ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 37843 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 3 | dalemceb 37857 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
5 | 1, 3 | dalemteb 37862 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
6 | 1, 3 | dalemueb 37863 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
7 | simp322 1323 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → ¬ 𝐶 ≤ (𝑇 ∨ 𝑈)) | |
8 | 1, 7 | sylbi 216 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ (𝑇 ∨ 𝑈)) |
9 | eqid 2737 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
11 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | 9, 10, 11 | latnlej2l 18248 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝐶 ≤ 𝑇) |
13 | 2, 4, 5, 6, 8, 12 | syl131anc 1382 | . 2 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝑇) |
14 | 1 | dalemclqjt 37854 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
15 | oveq1 7322 | . . . . . 6 ⊢ (𝑄 = 𝑇 → (𝑄 ∨ 𝑇) = (𝑇 ∨ 𝑇)) | |
16 | 15 | breq2d 5099 | . . . . 5 ⊢ (𝑄 = 𝑇 → (𝐶 ≤ (𝑄 ∨ 𝑇) ↔ 𝐶 ≤ (𝑇 ∨ 𝑇))) |
17 | 14, 16 | syl5ibcom 244 | . . . 4 ⊢ (𝜑 → (𝑄 = 𝑇 → 𝐶 ≤ (𝑇 ∨ 𝑇))) |
18 | 1 | dalemkehl 37842 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
19 | 1 | dalemtea 37849 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
20 | 11, 3 | hlatjidm 37587 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴) → (𝑇 ∨ 𝑇) = 𝑇) |
21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑇 ∨ 𝑇) = 𝑇) |
22 | 21 | breq2d 5099 | . . . 4 ⊢ (𝜑 → (𝐶 ≤ (𝑇 ∨ 𝑇) ↔ 𝐶 ≤ 𝑇)) |
23 | 17, 22 | sylibd 238 | . . 3 ⊢ (𝜑 → (𝑄 = 𝑇 → 𝐶 ≤ 𝑇)) |
24 | 23 | necon3bd 2955 | . 2 ⊢ (𝜑 → (¬ 𝐶 ≤ 𝑇 → 𝑄 ≠ 𝑇)) |
25 | 13, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 lecple 17039 joincjn 18099 Latclat 18219 Atomscatm 37481 HLchlt 37568 LPlanesclpl 37711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-proset 18083 df-poset 18101 df-lub 18134 df-glb 18135 df-join 18136 df-meet 18137 df-lat 18220 df-ats 37485 df-atl 37516 df-cvlat 37540 df-hlat 37569 |
This theorem is referenced by: dalemcea 37879 dalem2 37880 dalemdnee 37885 |
Copyright terms: Public domain | W3C validator |