| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemqnet | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39855. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| Ref | Expression |
|---|---|
| dalemqnet | ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkelat 39743 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 3 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 3 | dalemceb 39757 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
| 5 | 1, 3 | dalemteb 39762 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
| 6 | 1, 3 | dalemueb 39763 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
| 7 | simp322 1325 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → ¬ 𝐶 ≤ (𝑇 ∨ 𝑈)) | |
| 8 | 1, 7 | sylbi 217 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ (𝑇 ∨ 𝑈)) |
| 9 | eqid 2733 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 11 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | 9, 10, 11 | latnlej2l 18368 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝐶 ≤ 𝑇) |
| 13 | 2, 4, 5, 6, 8, 12 | syl131anc 1385 | . 2 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝑇) |
| 14 | 1 | dalemclqjt 39754 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑄 ∨ 𝑇)) |
| 15 | oveq1 7359 | . . . . . 6 ⊢ (𝑄 = 𝑇 → (𝑄 ∨ 𝑇) = (𝑇 ∨ 𝑇)) | |
| 16 | 15 | breq2d 5105 | . . . . 5 ⊢ (𝑄 = 𝑇 → (𝐶 ≤ (𝑄 ∨ 𝑇) ↔ 𝐶 ≤ (𝑇 ∨ 𝑇))) |
| 17 | 14, 16 | syl5ibcom 245 | . . . 4 ⊢ (𝜑 → (𝑄 = 𝑇 → 𝐶 ≤ (𝑇 ∨ 𝑇))) |
| 18 | 1 | dalemkehl 39742 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 19 | 1 | dalemtea 39749 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 20 | 11, 3 | hlatjidm 39488 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴) → (𝑇 ∨ 𝑇) = 𝑇) |
| 21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑇 ∨ 𝑇) = 𝑇) |
| 22 | 21 | breq2d 5105 | . . . 4 ⊢ (𝜑 → (𝐶 ≤ (𝑇 ∨ 𝑇) ↔ 𝐶 ≤ 𝑇)) |
| 23 | 17, 22 | sylibd 239 | . . 3 ⊢ (𝜑 → (𝑄 = 𝑇 → 𝐶 ≤ 𝑇)) |
| 24 | 23 | necon3bd 2943 | . 2 ⊢ (𝜑 → (¬ 𝐶 ≤ 𝑇 → 𝑄 ≠ 𝑇)) |
| 25 | 13, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑄 ≠ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 joincjn 18219 Latclat 18339 Atomscatm 39382 HLchlt 39469 LPlanesclpl 39611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-lat 18340 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 |
| This theorem is referenced by: dalemcea 39779 dalem2 39780 dalemdnee 39785 |
| Copyright terms: Public domain | W3C validator |