| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4627 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | 1 | ne0d 4308 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-dif 3920 df-nul 4300 df-sn 4593 |
| This theorem is referenced by: snn0d 4742 snnz 4743 frirr 5617 frsn 5729 omsucne 7864 1stconst 8082 2ndconst 8083 fczsupp0 8175 hashge3el3dif 14459 pwsbas 17457 pwsle 17462 trnei 23786 uffix 23815 neiflim 23868 flimclslem 23878 fclsfnflim 23921 ustneism 24118 ustuqtop5 24140 dv11cn 25913 noextendseq 27586 scutbdaylt 27737 lltropt 27791 snsssng 32450 cosnop 32625 elpadd2at 39807 onnog 43425 onnobdayg 43426 bdaybndbday 43428 |
| Copyright terms: Public domain | W3C validator |