Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4592 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | 1 | ne0d 4266 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: snn0d 4708 snnz 4709 frirr 5557 frsn 5665 omsucne 7706 1stconst 7911 2ndconst 7912 fczsupp0 7980 hashge3el3dif 14128 pwsbas 17115 pwsle 17120 trnei 22951 uffix 22980 neiflim 23033 flimclslem 23043 fclsfnflim 23086 ustneism 23283 ustuqtop5 23305 dv11cn 25070 snsssng 30761 cosnop 30930 noextendseq 33797 scutbdaylt 33939 lltropt 33983 elpadd2at 37747 |
Copyright terms: Public domain | W3C validator |