| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4612 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | 1 | ne0d 4293 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3906 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: snn0d 4727 snnz 4728 frirr 5595 frsn 5707 omsucne 7818 1stconst 8033 2ndconst 8034 fczsupp0 8126 hashge3el3dif 14394 pwsbas 17391 pwsle 17396 trnei 23777 uffix 23806 neiflim 23859 flimclslem 23869 fclsfnflim 23912 ustneism 24109 ustuqtop5 24131 dv11cn 25904 noextendseq 27577 scutbdaylt 27729 eqscut3 27735 lltropt 27786 snsssng 32458 cosnop 32637 elpadd2at 39789 onnog 43406 onnobdayg 43407 bdaybndbday 43409 |
| Copyright terms: Public domain | W3C validator |