![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4654 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | 1 | ne0d 4327 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2932 ∅c0 4314 {csn 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-dif 3943 df-nul 4315 df-sn 4621 |
This theorem is referenced by: snn0d 4771 snnz 4772 frirr 5643 frsn 5753 omsucne 7867 1stconst 8080 2ndconst 8081 fczsupp0 8172 hashge3el3dif 14443 pwsbas 17429 pwsle 17434 trnei 23706 uffix 23735 neiflim 23788 flimclslem 23798 fclsfnflim 23841 ustneism 24038 ustuqtop5 24060 dv11cn 25844 noextendseq 27504 scutbdaylt 27655 lltropt 27703 snsssng 32176 cosnop 32341 elpadd2at 39133 onnog 42635 onnobdayg 42636 bdaybndbday 42638 |
Copyright terms: Public domain | W3C validator |