| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4636 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | 1 | ne0d 4317 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-dif 3929 df-nul 4309 df-sn 4602 |
| This theorem is referenced by: snn0d 4751 snnz 4752 frirr 5630 frsn 5742 omsucne 7880 1stconst 8099 2ndconst 8100 fczsupp0 8192 hashge3el3dif 14505 pwsbas 17501 pwsle 17506 trnei 23830 uffix 23859 neiflim 23912 flimclslem 23922 fclsfnflim 23965 ustneism 24162 ustuqtop5 24184 dv11cn 25958 noextendseq 27631 scutbdaylt 27782 lltropt 27836 snsssng 32495 cosnop 32672 elpadd2at 39825 onnog 43453 onnobdayg 43454 bdaybndbday 43456 |
| Copyright terms: Public domain | W3C validator |