| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4620 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | 1 | ne0d 4301 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3914 df-nul 4293 df-sn 4586 |
| This theorem is referenced by: snn0d 4735 snnz 4736 frirr 5607 frsn 5719 omsucne 7841 1stconst 8056 2ndconst 8057 fczsupp0 8149 hashge3el3dif 14428 pwsbas 17426 pwsle 17431 trnei 23812 uffix 23841 neiflim 23894 flimclslem 23904 fclsfnflim 23947 ustneism 24144 ustuqtop5 24166 dv11cn 25939 noextendseq 27612 scutbdaylt 27764 eqscut3 27770 lltropt 27821 snsssng 32493 cosnop 32668 elpadd2at 39793 onnog 43411 onnobdayg 43412 bdaybndbday 43414 |
| Copyright terms: Public domain | W3C validator |