![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4398 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | 1 | ne0d 4122 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ≠ wne 2971 ∅c0 4115 {csn 4368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-v 3387 df-dif 3772 df-nul 4116 df-sn 4369 |
This theorem is referenced by: snnz 4497 0nelop 5150 frirr 5289 frsn 5394 1stconst 7502 2ndconst 7503 fczsupp0 7562 hashge3el3dif 13517 pwsbas 16462 pwsle 16467 trnei 22024 uffix 22053 neiflim 22106 hausflim 22113 flimcf 22114 flimclslem 22116 cnpflf2 22132 cnpflf 22133 fclsfnflim 22159 ustneism 22355 ustuqtop5 22377 neipcfilu 22428 dv11cn 24105 noextendseq 32333 scutbdaylt 32435 elpaddat 35825 elpadd2at 35827 snn0d 40017 ovnovollem3 41618 |
Copyright terms: Public domain | W3C validator |