![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4664 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | 1 | ne0d 4347 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-dif 3965 df-nul 4339 df-sn 4631 |
This theorem is referenced by: snn0d 4779 snnz 4780 frirr 5664 frsn 5775 omsucne 7905 1stconst 8123 2ndconst 8124 fczsupp0 8216 hashge3el3dif 14522 pwsbas 17533 pwsle 17538 trnei 23915 uffix 23944 neiflim 23997 flimclslem 24007 fclsfnflim 24050 ustneism 24247 ustuqtop5 24269 dv11cn 26054 noextendseq 27726 scutbdaylt 27877 lltropt 27925 snsssng 32541 cosnop 32709 elpadd2at 39788 onnog 43418 onnobdayg 43419 bdaybndbday 43421 |
Copyright terms: Public domain | W3C validator |