MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnzg Structured version   Visualization version   GIF version

Theorem snnzg 4741
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
snnzg (𝐴𝑉 → {𝐴} ≠ ∅)

Proof of Theorem snnzg
StepHypRef Expression
1 snidg 4627 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
21ne0d 4308 1 (𝐴𝑉 → {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  c0 4299  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-dif 3920  df-nul 4300  df-sn 4593
This theorem is referenced by:  snn0d  4742  snnz  4743  frirr  5617  frsn  5729  omsucne  7864  1stconst  8082  2ndconst  8083  fczsupp0  8175  hashge3el3dif  14459  pwsbas  17457  pwsle  17462  trnei  23786  uffix  23815  neiflim  23868  flimclslem  23878  fclsfnflim  23921  ustneism  24118  ustuqtop5  24140  dv11cn  25913  noextendseq  27586  scutbdaylt  27737  lltropt  27791  snsssng  32450  cosnop  32625  elpadd2at  39807  onnog  43425  onnobdayg  43426  bdaybndbday  43428
  Copyright terms: Public domain W3C validator