| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4610 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | 1 | ne0d 4289 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3900 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: snn0d 4725 snnz 4726 frirr 5590 frsn 5702 omsucne 7815 1stconst 8030 2ndconst 8031 fczsupp0 8123 hashge3el3dif 14394 pwsbas 17391 pwsle 17396 trnei 23807 uffix 23836 neiflim 23889 flimclslem 23899 fclsfnflim 23942 ustneism 24139 ustuqtop5 24160 dv11cn 25933 noextendseq 27606 scutbdaylt 27759 eqscut3 27765 lltropt 27817 snsssng 32494 cosnop 32676 elpadd2at 39915 onnog 43532 onnobdayg 43533 bdaybndbday 43535 |
| Copyright terms: Public domain | W3C validator |