| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4624 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | 1 | ne0d 4305 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3917 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: snn0d 4739 snnz 4740 frirr 5614 frsn 5726 omsucne 7861 1stconst 8079 2ndconst 8080 fczsupp0 8172 hashge3el3dif 14452 pwsbas 17450 pwsle 17455 trnei 23779 uffix 23808 neiflim 23861 flimclslem 23871 fclsfnflim 23914 ustneism 24111 ustuqtop5 24133 dv11cn 25906 noextendseq 27579 scutbdaylt 27730 lltropt 27784 snsssng 32443 cosnop 32618 elpadd2at 39800 onnog 43418 onnobdayg 43419 bdaybndbday 43421 |
| Copyright terms: Public domain | W3C validator |