![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnzg | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
snnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4682 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | 1 | ne0d 4365 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: snn0d 4800 snnz 4801 frirr 5676 frsn 5787 omsucne 7922 1stconst 8141 2ndconst 8142 fczsupp0 8234 hashge3el3dif 14536 pwsbas 17547 pwsle 17552 trnei 23921 uffix 23950 neiflim 24003 flimclslem 24013 fclsfnflim 24056 ustneism 24253 ustuqtop5 24275 dv11cn 26060 noextendseq 27730 scutbdaylt 27881 lltropt 27929 snsssng 32543 cosnop 32707 elpadd2at 39763 onnog 43391 onnobdayg 43392 bdaybndbday 43394 |
Copyright terms: Public domain | W3C validator |