MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssn Structured version   Visualization version   GIF version

Theorem sssn 4851
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
sssn (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))

Proof of Theorem sssn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4375 . . . . . . 7 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 4002 . . . . . . . . . . 11 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
3 elsni 4665 . . . . . . . . . . 11 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
42, 3syl6 35 . . . . . . . . . 10 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 = 𝐵))
5 eleq1 2832 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
64, 5syl6 35 . . . . . . . . 9 (𝐴 ⊆ {𝐵} → (𝑥𝐴 → (𝑥𝐴𝐵𝐴)))
76ibd 269 . . . . . . . 8 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝐵𝐴))
87exlimdv 1932 . . . . . . 7 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴𝐵𝐴))
91, 8biimtrid 242 . . . . . 6 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵𝐴))
10 snssi 4833 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
119, 10syl6 35 . . . . 5 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴))
1211anc2li 555 . . . 4 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)))
13 eqss 4024 . . . 4 (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))
1412, 13imbitrrdi 252 . . 3 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵}))
1514orrd 862 . 2 (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
16 0ss 4423 . . . 4 ∅ ⊆ {𝐵}
17 sseq1 4034 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
1816, 17mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
19 eqimss 4067 . . 3 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
2018, 19jaoi 856 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
2115, 20impbii 209 1 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wss 3976  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649
This theorem is referenced by:  eqsn  4854  snsssn  4866  pwsn  4924  frsn  5787  foconst  6849  fin1a2lem12  10480  fpwwe2lem12  10711  gsumval2  18724  0top  23011  minveclem4a  25483  uvtx01vtx  29432  snsssng  32543  pmtrcnelor  33084  0ringsubrg  33223  lvecdim0  33619  locfinref  33787  ordcmp  36413  bj-snmoore  37079  nlpineqsn  37374  uneqsn  43987  mosssn  48546  mosssn2  48548  mofsssn  48559
  Copyright terms: Public domain W3C validator