| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssn | Structured version Visualization version GIF version | ||
| Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| sssn | ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 4315 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | ssel 3940 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
| 3 | elsni 4606 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 4 | 2, 3 | syl6 35 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
| 5 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 6 | 4, 5 | syl6 35 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
| 7 | 6 | ibd 269 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 8 | 7 | exlimdv 1933 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 9 | 1, 8 | biimtrid 242 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴)) |
| 10 | snssi 4772 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 11 | 9, 10 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴)) |
| 12 | 11 | anc2li 555 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
| 13 | eqss 3962 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
| 14 | 12, 13 | imbitrrdi 252 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵})) |
| 15 | 14 | orrd 863 | . 2 ⊢ (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| 16 | 0ss 4363 | . . . 4 ⊢ ∅ ⊆ {𝐵} | |
| 17 | sseq1 3972 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
| 18 | 16, 17 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
| 19 | eqimss 4005 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 20 | 18, 19 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: eqsn 4793 snsssn 4805 pwsn 4864 frsn 5726 foconst 6787 fin1a2lem12 10364 fpwwe2lem12 10595 gsumval2 18613 0top 22870 minveclem4a 25330 uvtx01vtx 29324 snsssng 32443 pmtrcnelor 33048 0ringsubrg 33202 lvecdim0 33602 locfinref 33831 ordcmp 36435 bj-snmoore 37101 nlpineqsn 37396 uneqsn 44014 mosssn 48803 mosssn2 48805 mofsssn 48834 |
| Copyright terms: Public domain | W3C validator |