| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssn | Structured version Visualization version GIF version | ||
| Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| sssn | ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 4303 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | ssel 3929 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
| 3 | elsni 4594 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 4 | 2, 3 | syl6 35 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
| 5 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 6 | 4, 5 | syl6 35 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
| 7 | 6 | ibd 269 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 8 | 7 | exlimdv 1933 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 9 | 1, 8 | biimtrid 242 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴)) |
| 10 | snssi 4759 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 11 | 9, 10 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴)) |
| 12 | 11 | anc2li 555 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
| 13 | eqss 3951 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
| 14 | 12, 13 | imbitrrdi 252 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵})) |
| 15 | 14 | orrd 863 | . 2 ⊢ (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| 16 | 0ss 4351 | . . . 4 ⊢ ∅ ⊆ {𝐵} | |
| 17 | sseq1 3961 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
| 18 | 16, 17 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
| 19 | eqimss 3994 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 20 | 18, 19 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3903 ∅c0 4284 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: eqsn 4780 snsssn 4792 pwsn 4851 frsn 5707 foconst 6751 fin1a2lem12 10305 fpwwe2lem12 10536 gsumval2 18560 0top 22868 minveclem4a 25328 uvtx01vtx 29342 snsssng 32458 pmtrcnelor 33033 0ringsubrg 33191 lvecdim0 33573 locfinref 33808 ordcmp 36421 bj-snmoore 37087 nlpineqsn 37382 uneqsn 43998 mosssn 48799 mosssn2 48801 mofsssn 48830 |
| Copyright terms: Public domain | W3C validator |