| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssn | Structured version Visualization version GIF version | ||
| Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| sssn | ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 4299 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | ssel 3923 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
| 3 | elsni 4590 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 4 | 2, 3 | syl6 35 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
| 5 | eleq1 2819 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 6 | 4, 5 | syl6 35 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
| 7 | 6 | ibd 269 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 8 | 7 | exlimdv 1934 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 9 | 1, 8 | biimtrid 242 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴)) |
| 10 | snssi 4757 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 11 | 9, 10 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴)) |
| 12 | 11 | anc2li 555 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
| 13 | eqss 3945 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
| 14 | 12, 13 | imbitrrdi 252 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵})) |
| 15 | 14 | orrd 863 | . 2 ⊢ (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| 16 | 0ss 4347 | . . . 4 ⊢ ∅ ⊆ {𝐵} | |
| 17 | sseq1 3955 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
| 18 | 16, 17 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
| 19 | eqimss 3988 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 20 | 18, 19 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: eqsn 4778 snsssn 4790 pwsn 4849 frsn 5702 foconst 6750 fin1a2lem12 10302 fpwwe2lem12 10533 gsumval2 18594 0top 22898 minveclem4a 25357 uvtx01vtx 29375 snsssng 32494 pmtrcnelor 33060 0ringsubrg 33218 lvecdim0 33619 locfinref 33854 ordcmp 36491 bj-snmoore 37157 nlpineqsn 37452 uneqsn 44128 mosssn 48925 mosssn2 48927 mofsssn 48956 |
| Copyright terms: Public domain | W3C validator |