| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssn | Structured version Visualization version GIF version | ||
| Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| sssn | ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 4327 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | ssel 3952 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
| 3 | elsni 4618 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 4 | 2, 3 | syl6 35 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
| 5 | eleq1 2822 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 6 | 4, 5 | syl6 35 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
| 7 | 6 | ibd 269 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 8 | 7 | exlimdv 1933 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 9 | 1, 8 | biimtrid 242 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴)) |
| 10 | snssi 4784 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 11 | 9, 10 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴)) |
| 12 | 11 | anc2li 555 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
| 13 | eqss 3974 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
| 14 | 12, 13 | imbitrrdi 252 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵})) |
| 15 | 14 | orrd 863 | . 2 ⊢ (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| 16 | 0ss 4375 | . . . 4 ⊢ ∅ ⊆ {𝐵} | |
| 17 | sseq1 3984 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
| 18 | 16, 17 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
| 19 | eqimss 4017 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 20 | 18, 19 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ⊆ wss 3926 ∅c0 4308 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-sn 4602 |
| This theorem is referenced by: eqsn 4805 snsssn 4817 pwsn 4876 frsn 5742 foconst 6805 fin1a2lem12 10425 fpwwe2lem12 10656 gsumval2 18664 0top 22921 minveclem4a 25382 uvtx01vtx 29376 snsssng 32495 pmtrcnelor 33102 0ringsubrg 33246 lvecdim0 33646 locfinref 33872 ordcmp 36465 bj-snmoore 37131 nlpineqsn 37426 uneqsn 44049 mosssn 48793 mosssn2 48795 mofsssn 48824 |
| Copyright terms: Public domain | W3C validator |