![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sssn | Structured version Visualization version GIF version |
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
sssn | ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4235 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | ssel 3889 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
3 | elsni 4495 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
4 | 2, 3 | syl6 35 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
5 | eleq1 2872 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
6 | 4, 5 | syl6 35 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
7 | 6 | ibd 270 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
8 | 7 | exlimdv 1915 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
9 | 1, 8 | syl5bi 243 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴)) |
10 | snssi 4654 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
11 | 9, 10 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴)) |
12 | 11 | anc2li 556 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
13 | eqss 3910 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
14 | 12, 13 | syl6ibr 253 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵})) |
15 | 14 | orrd 858 | . 2 ⊢ (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
16 | 0ss 4276 | . . . 4 ⊢ ∅ ⊆ {𝐵} | |
17 | sseq1 3919 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
18 | 16, 17 | mpbiri 259 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
19 | eqimss 3950 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
20 | 18, 19 | jaoi 852 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
21 | 15, 20 | impbii 210 | 1 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1525 ∃wex 1765 ∈ wcel 2083 ⊆ wss 3865 ∅c0 4217 {csn 4478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-dif 3868 df-in 3872 df-ss 3880 df-nul 4218 df-sn 4479 |
This theorem is referenced by: eqsn 4675 snsssn 4685 pwsn 4743 frsn 5532 foconst 6478 fin1a2lem12 9686 fpwwe2lem13 9917 gsumval2 17723 0top 21279 minveclem4a 23720 uvtx01vtx 26866 pmtrcnelor 30390 lvecdim0 30605 locfinref 30718 ordcmp 33406 bj-snmoore 34026 nlpineqsn 34241 uneqsn 39879 |
Copyright terms: Public domain | W3C validator |