MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssn Structured version   Visualization version   GIF version

Theorem sssn 4802
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
sssn (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))

Proof of Theorem sssn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4327 . . . . . . 7 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 3952 . . . . . . . . . . 11 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
3 elsni 4618 . . . . . . . . . . 11 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
42, 3syl6 35 . . . . . . . . . 10 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 = 𝐵))
5 eleq1 2822 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
64, 5syl6 35 . . . . . . . . 9 (𝐴 ⊆ {𝐵} → (𝑥𝐴 → (𝑥𝐴𝐵𝐴)))
76ibd 269 . . . . . . . 8 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝐵𝐴))
87exlimdv 1933 . . . . . . 7 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴𝐵𝐴))
91, 8biimtrid 242 . . . . . 6 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵𝐴))
10 snssi 4784 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
119, 10syl6 35 . . . . 5 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴))
1211anc2li 555 . . . 4 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)))
13 eqss 3974 . . . 4 (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))
1412, 13imbitrrdi 252 . . 3 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵}))
1514orrd 863 . 2 (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
16 0ss 4375 . . . 4 ∅ ⊆ {𝐵}
17 sseq1 3984 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
1816, 17mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
19 eqimss 4017 . . 3 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
2018, 19jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
2115, 20impbii 209 1 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  wss 3926  c0 4308  {csn 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-ss 3943  df-nul 4309  df-sn 4602
This theorem is referenced by:  eqsn  4805  snsssn  4817  pwsn  4876  frsn  5742  foconst  6805  fin1a2lem12  10425  fpwwe2lem12  10656  gsumval2  18664  0top  22921  minveclem4a  25382  uvtx01vtx  29376  snsssng  32495  pmtrcnelor  33102  0ringsubrg  33246  lvecdim0  33646  locfinref  33872  ordcmp  36465  bj-snmoore  37131  nlpineqsn  37426  uneqsn  44049  mosssn  48793  mosssn2  48795  mofsssn  48824
  Copyright terms: Public domain W3C validator