MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimdv Structured version   Visualization version   GIF version

Theorem rspcimdv 3591
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcimdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 3052 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
2 rspcimdv.1 . . 3 (𝜑𝐴𝐵)
3 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
43eleq1d 2819 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝑥𝐵𝐴𝐵))
54biimprd 248 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝐴𝐵𝑥𝐵))
6 rspcimdv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
75, 6imim12d 81 . . . 4 ((𝜑𝑥 = 𝐴) → ((𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
82, 7spcimdv 3572 . . 3 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → (𝐴𝐵𝜒)))
92, 8mpid 44 . 2 (𝜑 → (∀𝑥(𝑥𝐵𝜓) → 𝜒))
101, 9biimtrid 242 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052
This theorem is referenced by:  rspcimedv  3592  rspcdv  3593  wrd2ind  14741  mreexd  17654  mreexexlemd  17656  catcocl  17697  catass  17698  moni  17749  subccocl  17858  funcco  17884  fullfo  17927  fthf1  17932  nati  17971  acsfiindd  18563  chpscmat  22780  mpomulcn  24809  friendshipgt3  30379  lmxrge0  33983  funressnfv  47072  cfsetsnfsetf1  47088
  Copyright terms: Public domain W3C validator