![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcimdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rspcimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
2 | rspcimdv.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
4 | 3 | eleq1d 2829 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
5 | 4 | biimprd 248 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
6 | rspcimdv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
7 | 5, 6 | imim12d 81 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐵 → 𝜓) → (𝐴 ∈ 𝐵 → 𝜒))) |
8 | 2, 7 | spcimdv 3606 | . . 3 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜓) → (𝐴 ∈ 𝐵 → 𝜒))) |
9 | 2, 8 | mpid 44 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜓) → 𝜒)) |
10 | 1, 9 | biimtrid 242 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: rspcimedv 3626 rspcdv 3627 wrd2ind 14771 mreexd 17700 mreexexlemd 17702 catcocl 17743 catass 17744 moni 17797 subccocl 17909 funcco 17935 fullfo 17979 fthf1 17984 nati 18023 acsfiindd 18623 chpscmat 22869 mpomulcn 24910 friendshipgt3 30430 lmxrge0 33898 funressnfv 46958 cfsetsnfsetf1 46974 |
Copyright terms: Public domain | W3C validator |