| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcimdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rspcimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | rspcimdv.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 4 | 3 | eleq1d 2813 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 5 | 4 | biimprd 248 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
| 6 | rspcimdv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
| 7 | 5, 6 | imim12d 81 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐵 → 𝜓) → (𝐴 ∈ 𝐵 → 𝜒))) |
| 8 | 2, 7 | spcimdv 3548 | . . 3 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜓) → (𝐴 ∈ 𝐵 → 𝜒))) |
| 9 | 2, 8 | mpid 44 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜓) → 𝜒)) |
| 10 | 1, 9 | biimtrid 242 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspcimedv 3568 rspcdv 3569 wrd2ind 14629 mreexd 17548 mreexexlemd 17550 catcocl 17591 catass 17592 moni 17643 subccocl 17752 funcco 17778 fullfo 17821 fthf1 17826 nati 17865 acsfiindd 18459 chpscmat 22727 mpomulcn 24756 friendshipgt3 30346 lmxrge0 33935 funressnfv 47047 cfsetsnfsetf1 47063 |
| Copyright terms: Public domain | W3C validator |