| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcimdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rspcimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | rspcimdv.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 4 | 3 | eleq1d 2816 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 5 | 4 | biimprd 248 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
| 6 | rspcimdv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
| 7 | 5, 6 | imim12d 81 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐵 → 𝜓) → (𝐴 ∈ 𝐵 → 𝜒))) |
| 8 | 2, 7 | spcimdv 3543 | . . 3 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜓) → (𝐴 ∈ 𝐵 → 𝜒))) |
| 9 | 2, 8 | mpid 44 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜓) → 𝜒)) |
| 10 | 1, 9 | biimtrid 242 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: rspcimedv 3563 rspcdv 3564 wrd2ind 14630 mreexd 17548 mreexexlemd 17550 catcocl 17591 catass 17592 moni 17643 subccocl 17752 funcco 17778 fullfo 17821 fthf1 17826 nati 17865 acsfiindd 18459 chpscmat 22757 mpomulcn 24785 friendshipgt3 30378 lmxrge0 33965 funressnfv 47142 cfsetsnfsetf1 47158 |
| Copyright terms: Public domain | W3C validator |