| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intabssd | Structured version Visualization version GIF version | ||
| Description: When for each element 𝑦 there is a subset 𝐴 which may substituted for 𝑥 such that 𝑦 satisfying 𝜒 implies 𝑥 satisfies 𝜓 then the intersection of all 𝑥 that satisfy 𝜓 is a subclass the intersection of all 𝑦 that satisfy 𝜒. (Contributed by RP, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| intabssd.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| intabssd.sub | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| intabssd.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑦) |
| Ref | Expression |
|---|---|
| intabssd | ⊢ (𝜑 → ∩ {𝑥 ∣ 𝜓} ⊆ ∩ {𝑦 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intabssd.ex | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | intabssd.sub | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
| 3 | eleq2 2824 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴)) | |
| 4 | 3 | biimpd 229 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝐴)) |
| 5 | intabssd.ss | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝑦) | |
| 6 | 5 | sseld 3962 | . . . . . . 7 ⊢ (𝜑 → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑦)) |
| 7 | 4, 6 | sylan9r 508 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
| 8 | 2, 7 | imim12d 81 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝜓 → 𝑧 ∈ 𝑥) → (𝜒 → 𝑧 ∈ 𝑦))) |
| 9 | 1, 8 | spcimdv 3577 | . . . 4 ⊢ (𝜑 → (∀𝑥(𝜓 → 𝑧 ∈ 𝑥) → (𝜒 → 𝑧 ∈ 𝑦))) |
| 10 | 9 | alrimdv 1929 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 → 𝑧 ∈ 𝑥) → ∀𝑦(𝜒 → 𝑧 ∈ 𝑦))) |
| 11 | vex 3468 | . . . 4 ⊢ 𝑧 ∈ V | |
| 12 | 11 | elintab 4939 | . . 3 ⊢ (𝑧 ∈ ∩ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜓 → 𝑧 ∈ 𝑥)) |
| 13 | 11 | elintab 4939 | . . 3 ⊢ (𝑧 ∈ ∩ {𝑦 ∣ 𝜒} ↔ ∀𝑦(𝜒 → 𝑧 ∈ 𝑦)) |
| 14 | 10, 12, 13 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∩ {𝑥 ∣ 𝜓} → 𝑧 ∈ ∩ {𝑦 ∣ 𝜒})) |
| 15 | 14 | ssrdv 3969 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ 𝜓} ⊆ ∩ {𝑦 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2714 ⊆ wss 3931 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-ss 3948 df-int 4928 |
| This theorem is referenced by: harval3 43529 clcnvlem 43614 |
| Copyright terms: Public domain | W3C validator |