Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcegf | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
spcgf.1 | ⊢ Ⅎ𝑥𝐴 |
spcgf.2 | ⊢ Ⅎ𝑥𝜓 |
spcgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegf | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | spcgf.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | nfn 1861 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
4 | spcgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
6 | 1, 3, 5 | spcgf 3520 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓)) |
7 | 6 | con2d 134 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑)) |
8 | df-ex 1784 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
9 | 7, 8 | syl6ibr 251 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 |
This theorem is referenced by: rspce 3540 euotd 5421 bnj607 32796 bnj1491 32937 rspcegf 42455 stoweidlem36 43467 stoweidlem46 43477 ichnreuop 44812 ichreuopeq 44813 |
Copyright terms: Public domain | W3C validator |