MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcegf Structured version   Visualization version   GIF version

Theorem spcegf 3591
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.1 . . . 4 𝑥𝐴
2 spcgf.2 . . . . 5 𝑥𝜓
32nfn 1856 . . . 4 𝑥 ¬ 𝜓
4 spcgf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54notbid 318 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
61, 3, 5spcgf 3590 . . 3 (𝐴𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓))
76con2d 134 . 2 (𝐴𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑))
8 df-ex 1779 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
97, 8imbitrrdi 252 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1537   = wceq 1539  wex 1778  wnf 1782  wcel 2107  wnfc 2889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-cleq 2728  df-clel 2815  df-nfc 2891
This theorem is referenced by:  rspce  3610  euotd  5517  bnj607  34931  bnj1491  35072  rspcegf  45033  stoweidlem36  46056  stoweidlem46  46066  ichnreuop  47464  ichreuopeq  47465
  Copyright terms: Public domain W3C validator