![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcegf | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
spcgf.1 | ⊢ Ⅎ𝑥𝐴 |
spcgf.2 | ⊢ Ⅎ𝑥𝜓 |
spcgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegf | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | spcgf.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
4 | spcgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
6 | 1, 3, 5 | spcgf 3604 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓)) |
7 | 6 | con2d 134 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑)) |
8 | df-ex 1778 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
9 | 7, 8 | imbitrrdi 252 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 |
This theorem is referenced by: rspce 3624 euotd 5532 bnj607 34892 bnj1491 35033 rspcegf 44923 stoweidlem36 45957 stoweidlem46 45967 ichnreuop 47346 ichreuopeq 47347 |
Copyright terms: Public domain | W3C validator |