MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcegf Structured version   Visualization version   GIF version

Theorem spcegf 3530
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.1 . . . 4 𝑥𝐴
2 spcgf.2 . . . . 5 𝑥𝜓
32nfn 1864 . . . 4 𝑥 ¬ 𝜓
4 spcgf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54notbid 318 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
61, 3, 5spcgf 3529 . . 3 (𝐴𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓))
76con2d 134 . 2 (𝐴𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑))
8 df-ex 1787 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
97, 8syl6ibr 251 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1540   = wceq 1542  wex 1786  wnf 1790  wcel 2110  wnfc 2889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-v 3433
This theorem is referenced by:  rspce  3549  euotd  5431  bnj607  32905  bnj1491  33046  rspcegf  42548  stoweidlem36  43559  stoweidlem46  43569  ichnreuop  44903  ichreuopeq  44904
  Copyright terms: Public domain W3C validator