| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4452). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4138 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
| 2 | undif1 4456 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
| 3 | uncom 4138 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2763 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3928 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: undif 4462 dfif5 4522 funiunfv 7245 difex2 7759 undom 9078 undomOLD 9079 sucdom2OLD 9101 domss2 9155 sucdom2 9222 marypha1lem 9450 kmlem11 10180 hashun2 14406 hashun3 14407 cvgcmpce 15839 dprd2da 20030 dpjcntz 20040 dpjdisj 20041 dpjlsm 20042 dpjidcl 20046 ablfac1eu 20061 dfconn2 23362 2ndcdisj2 23400 fixufil 23865 fin1aufil 23875 xrge0gsumle 24778 unmbl 25495 volsup 25514 mbfss 25604 itg2cnlem2 25720 iblss2 25764 amgm 26958 wilthlem2 27036 ftalem3 27042 rpvmasum2 27480 noetasuplem4 27705 noetainflem4 27709 esumpad 34091 srcmpltd 35116 imadifss 37624 elrfi 42684 oaun2 43372 oaun3 43373 meaunle 46460 dfclnbgr4 47805 clnbupgr 47814 |
| Copyright terms: Public domain | W3C validator |