![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4495). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4181 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
2 | undif1 4499 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
3 | uncom 4181 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2772 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 |
This theorem is referenced by: undif 4505 dfif5 4564 funiunfv 7285 difex2 7795 undom 9125 undomOLD 9126 sucdom2OLD 9148 domss2 9202 sucdom2 9269 marypha1lem 9502 kmlem11 10230 hashun2 14432 hashun3 14433 cvgcmpce 15866 dprd2da 20086 dpjcntz 20096 dpjdisj 20097 dpjlsm 20098 dpjidcl 20102 ablfac1eu 20117 dfconn2 23448 2ndcdisj2 23486 fixufil 23951 fin1aufil 23961 xrge0gsumle 24874 unmbl 25591 volsup 25610 mbfss 25700 itg2cnlem2 25817 iblss2 25861 amgm 27052 wilthlem2 27130 ftalem3 27136 rpvmasum2 27574 noetasuplem4 27799 noetainflem4 27803 esumpad 34019 srcmpltd 35056 imadifss 37555 elrfi 42650 oaun2 43343 oaun3 43344 meaunle 46385 dfclnbgr4 47698 clnbupgr 47706 |
Copyright terms: Public domain | W3C validator |