| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4423). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4109 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
| 2 | undif1 4427 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
| 3 | uncom 4109 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2756 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 |
| This theorem is referenced by: undif 4433 dfif5 4493 funiunfv 7184 difex2 7696 undom 8982 domss2 9053 sucdom2 9117 marypha1lem 9323 kmlem11 10055 hashun2 14290 hashun3 14291 cvgcmpce 15725 dprd2da 19923 dpjcntz 19933 dpjdisj 19934 dpjlsm 19935 dpjidcl 19939 ablfac1eu 19954 dfconn2 23304 2ndcdisj2 23342 fixufil 23807 fin1aufil 23817 xrge0gsumle 24720 unmbl 25436 volsup 25455 mbfss 25545 itg2cnlem2 25661 iblss2 25705 amgm 26899 wilthlem2 26977 ftalem3 26983 rpvmasum2 27421 noetasuplem4 27646 noetainflem4 27650 esumpad 34022 srcmpltd 35047 imadifss 37579 elrfi 42671 oaun2 43358 oaun3 43359 meaunle 46449 dfclnbgr4 47812 clnbupgr 47821 |
| Copyright terms: Public domain | W3C validator |