| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4438). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4124 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
| 2 | undif1 4442 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
| 3 | uncom 4124 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2757 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: undif 4448 dfif5 4508 funiunfv 7225 difex2 7739 undom 9033 undomOLD 9034 sucdom2OLD 9056 domss2 9106 sucdom2 9173 marypha1lem 9391 kmlem11 10121 hashun2 14355 hashun3 14356 cvgcmpce 15791 dprd2da 19981 dpjcntz 19991 dpjdisj 19992 dpjlsm 19993 dpjidcl 19997 ablfac1eu 20012 dfconn2 23313 2ndcdisj2 23351 fixufil 23816 fin1aufil 23826 xrge0gsumle 24729 unmbl 25445 volsup 25464 mbfss 25554 itg2cnlem2 25670 iblss2 25714 amgm 26908 wilthlem2 26986 ftalem3 26992 rpvmasum2 27430 noetasuplem4 27655 noetainflem4 27659 esumpad 34052 srcmpltd 35077 imadifss 37596 elrfi 42689 oaun2 43377 oaun3 43378 meaunle 46469 dfclnbgr4 47829 clnbupgr 47838 |
| Copyright terms: Public domain | W3C validator |