| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4435). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4121 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
| 2 | undif1 4439 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
| 3 | uncom 4121 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2756 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: undif 4445 dfif5 4505 funiunfv 7222 difex2 7736 undom 9029 domss2 9100 sucdom2 9167 marypha1lem 9384 kmlem11 10114 hashun2 14348 hashun3 14349 cvgcmpce 15784 dprd2da 19974 dpjcntz 19984 dpjdisj 19985 dpjlsm 19986 dpjidcl 19990 ablfac1eu 20005 dfconn2 23306 2ndcdisj2 23344 fixufil 23809 fin1aufil 23819 xrge0gsumle 24722 unmbl 25438 volsup 25457 mbfss 25547 itg2cnlem2 25663 iblss2 25707 amgm 26901 wilthlem2 26979 ftalem3 26985 rpvmasum2 27423 noetasuplem4 27648 noetainflem4 27652 esumpad 34045 srcmpltd 35070 imadifss 37589 elrfi 42682 oaun2 43370 oaun3 43371 meaunle 46462 dfclnbgr4 47825 clnbupgr 47834 |
| Copyright terms: Public domain | W3C validator |