Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4402). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4083 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
2 | undif1 4406 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
3 | uncom 4083 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2770 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: undif 4412 dfif5 4472 funiunfv 7103 difex2 7588 undom 8800 sucdom2 8822 domss2 8872 unfiOLD 9011 marypha1lem 9122 kmlem11 9847 hashun2 14026 hashun3 14027 cvgcmpce 15458 dprd2da 19560 dpjcntz 19570 dpjdisj 19571 dpjlsm 19572 dpjidcl 19576 ablfac1eu 19591 dfconn2 22478 2ndcdisj2 22516 fixufil 22981 fin1aufil 22991 xrge0gsumle 23902 unmbl 24606 volsup 24625 mbfss 24715 itg2cnlem2 24832 iblss2 24875 amgm 26045 wilthlem2 26123 ftalem3 26129 rpvmasum2 26565 esumpad 31923 srcmpltd 32954 noetasuplem4 33866 noetainflem4 33870 imadifss 35679 elrfi 40432 meaunle 43892 |
Copyright terms: Public domain | W3C validator |