| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version | ||
| Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4419). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4105 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
| 2 | undif1 4423 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
| 3 | uncom 4105 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2758 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 |
| This theorem is referenced by: undif 4429 dfif5 4489 funiunfv 7182 difex2 7693 undom 8978 domss2 9049 sucdom2 9112 marypha1lem 9317 kmlem11 10052 hashun2 14290 hashun3 14291 cvgcmpce 15725 dprd2da 19956 dpjcntz 19966 dpjdisj 19967 dpjlsm 19968 dpjidcl 19972 ablfac1eu 19987 dfconn2 23334 2ndcdisj2 23372 fixufil 23837 fin1aufil 23847 xrge0gsumle 24749 unmbl 25465 volsup 25484 mbfss 25574 itg2cnlem2 25690 iblss2 25734 amgm 26928 wilthlem2 27006 ftalem3 27012 rpvmasum2 27450 noetasuplem4 27675 noetainflem4 27679 esumpad 34068 srcmpltd 35092 imadifss 37645 elrfi 42797 oaun2 43484 oaun3 43485 meaunle 46572 dfclnbgr4 47934 clnbupgr 47943 |
| Copyright terms: Public domain | W3C validator |