![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4478). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4168 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
2 | undif1 4482 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
3 | uncom 4168 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2767 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3960 ∪ cun 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 |
This theorem is referenced by: undif 4488 dfif5 4547 funiunfv 7268 difex2 7779 undom 9098 undomOLD 9099 sucdom2OLD 9121 domss2 9175 sucdom2 9241 marypha1lem 9471 kmlem11 10199 hashun2 14419 hashun3 14420 cvgcmpce 15851 dprd2da 20077 dpjcntz 20087 dpjdisj 20088 dpjlsm 20089 dpjidcl 20093 ablfac1eu 20108 dfconn2 23443 2ndcdisj2 23481 fixufil 23946 fin1aufil 23956 xrge0gsumle 24869 unmbl 25586 volsup 25605 mbfss 25695 itg2cnlem2 25812 iblss2 25856 amgm 27049 wilthlem2 27127 ftalem3 27133 rpvmasum2 27571 noetasuplem4 27796 noetainflem4 27800 esumpad 34036 srcmpltd 35073 imadifss 37582 elrfi 42682 oaun2 43371 oaun3 43372 meaunle 46420 dfclnbgr4 47749 clnbupgr 47758 |
Copyright terms: Public domain | W3C validator |