![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif2 | Structured version Visualization version GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4264). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif2 | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3980 | . 2 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∪ 𝐴) | |
2 | undif1 4267 | . 2 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
3 | uncom 3980 | . 2 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2806 | 1 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∖ cdif 3789 ∪ cun 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 |
This theorem is referenced by: undif 4273 dfif5 4323 funiunfv 6780 difex2 7248 undom 8338 domss2 8409 sucdom2 8446 unfi 8517 marypha1lem 8629 kmlem11 9319 hashun2 13491 hashun3 13492 cvgcmpce 14958 dprd2da 18832 dpjcntz 18842 dpjdisj 18843 dpjlsm 18844 dpjidcl 18848 ablfac1eu 18863 dfconn2 21635 2ndcdisj2 21673 fixufil 22138 fin1aufil 22148 xrge0gsumle 23048 unmbl 23745 volsup 23764 mbfss 23854 itg2cnlem2 23970 iblss2 24013 amgm 25173 wilthlem2 25251 ftalem3 25257 rpvmasum2 25657 esumpad 30719 noetalem3 32458 noetalem4 32459 imadifss 34014 elrfi 38227 meaunle 41615 |
Copyright terms: Public domain | W3C validator |