Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdf2 | Structured version Visualization version GIF version |
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssdf2.p | ⊢ Ⅎ𝑥𝜑 |
ssdf2.a | ⊢ Ⅎ𝑥𝐴 |
ssdf2.b | ⊢ Ⅎ𝑥𝐵 |
ssdf2.x | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssdf2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdf2.p | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ssdf2.a | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | ssdf2.b | . 2 ⊢ Ⅎ𝑥𝐵 | |
4 | ssdf2.x | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
5 | 4 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | ssrd 3922 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: supminfxr2 42899 |
Copyright terms: Public domain | W3C validator |