Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdf2 Structured version   Visualization version   GIF version

Theorem ssdf2 42690
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
ssdf2.p 𝑥𝜑
ssdf2.a 𝑥𝐴
ssdf2.b 𝑥𝐵
ssdf2.x ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssdf2 (𝜑𝐴𝐵)

Proof of Theorem ssdf2
StepHypRef Expression
1 ssdf2.p . 2 𝑥𝜑
2 ssdf2.a . 2 𝑥𝐴
3 ssdf2.b . 2 𝑥𝐵
4 ssdf2.x . . 3 ((𝜑𝑥𝐴) → 𝑥𝐵)
54ex 413 . 2 (𝜑 → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5ssrd 3926 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  wnfc 2887  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  supminfxr2  43009
  Copyright terms: Public domain W3C validator