![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdf2 | Structured version Visualization version GIF version |
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssdf2.p | ⊢ Ⅎ𝑥𝜑 |
ssdf2.a | ⊢ Ⅎ𝑥𝐴 |
ssdf2.b | ⊢ Ⅎ𝑥𝐵 |
ssdf2.x | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssdf2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdf2.p | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ssdf2.a | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | ssdf2.b | . 2 ⊢ Ⅎ𝑥𝐵 | |
4 | ssdf2.x | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
5 | 4 | ex 413 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | ssrd 3987 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: supminfxr2 44169 fsupdm 45548 finfdm 45552 |
Copyright terms: Public domain | W3C validator |