| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabssd | Structured version Visualization version GIF version | ||
| Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| rabssd.1 | ⊢ Ⅎ𝑥𝜑 |
| rabssd.2 | ⊢ Ⅎ𝑥𝐵 |
| rabssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rabssd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rabssd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) | |
| 3 | 2 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜒 → 𝑥 ∈ 𝐵))) |
| 4 | 1, 3 | ralrimi 3256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜒 → 𝑥 ∈ 𝐵)) |
| 5 | rabssd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | rabssf 45129 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜒 → 𝑥 ∈ 𝐵)) |
| 7 | 4, 6 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2889 ∀wral 3060 {crab 3435 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rab 3436 df-ss 3967 |
| This theorem is referenced by: pimxrneun 45504 fsupdm 46862 finfdm 46866 |
| Copyright terms: Public domain | W3C validator |