Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabssd Structured version   Visualization version   GIF version

Theorem rabssd 45119
Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
rabssd.1 𝑥𝜑
rabssd.2 𝑥𝐵
rabssd.3 ((𝜑𝑥𝐴𝜒) → 𝑥𝐵)
Assertion
Ref Expression
rabssd (𝜑 → {𝑥𝐴𝜒} ⊆ 𝐵)

Proof of Theorem rabssd
StepHypRef Expression
1 rabssd.1 . . 3 𝑥𝜑
2 rabssd.3 . . . 4 ((𝜑𝑥𝐴𝜒) → 𝑥𝐵)
323exp 1119 . . 3 (𝜑 → (𝑥𝐴 → (𝜒𝑥𝐵)))
41, 3ralrimi 3243 . 2 (𝜑 → ∀𝑥𝐴 (𝜒𝑥𝐵))
5 rabssd.2 . . 3 𝑥𝐵
65rabssf 45096 . 2 ({𝑥𝐴𝜒} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜒𝑥𝐵))
74, 6sylibr 234 1 (𝜑 → {𝑥𝐴𝜒} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wnf 1782  wcel 2107  wnfc 2882  wral 3050  {crab 3419  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rab 3420  df-ss 3948
This theorem is referenced by:  pimxrneun  45471  fsupdm  46829  finfdm  46833
  Copyright terms: Public domain W3C validator