Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabssd | Structured version Visualization version GIF version |
Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rabssd.1 | ⊢ Ⅎ𝑥𝜑 |
rabssd.2 | ⊢ Ⅎ𝑥𝐵 |
rabssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabssd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rabssd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) | |
3 | 2 | 3exp 1120 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜒 → 𝑥 ∈ 𝐵))) |
4 | 1, 3 | ralrimi 3128 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜒 → 𝑥 ∈ 𝐵)) |
5 | rabssd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | rabssf 42226 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜒 → 𝑥 ∈ 𝐵)) |
7 | 4, 6 | sylibr 237 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 Ⅎwnf 1790 ∈ wcel 2114 Ⅎwnfc 2879 ∀wral 3053 {crab 3057 ⊆ wss 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rab 3062 df-v 3400 df-in 3850 df-ss 3860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |