Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabssd Structured version   Visualization version   GIF version

Theorem rabssd 42249
Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
rabssd.1 𝑥𝜑
rabssd.2 𝑥𝐵
rabssd.3 ((𝜑𝑥𝐴𝜒) → 𝑥𝐵)
Assertion
Ref Expression
rabssd (𝜑 → {𝑥𝐴𝜒} ⊆ 𝐵)

Proof of Theorem rabssd
StepHypRef Expression
1 rabssd.1 . . 3 𝑥𝜑
2 rabssd.3 . . . 4 ((𝜑𝑥𝐴𝜒) → 𝑥𝐵)
323exp 1120 . . 3 (𝜑 → (𝑥𝐴 → (𝜒𝑥𝐵)))
41, 3ralrimi 3128 . 2 (𝜑 → ∀𝑥𝐴 (𝜒𝑥𝐵))
5 rabssd.2 . . 3 𝑥𝐵
65rabssf 42226 . 2 ({𝑥𝐴𝜒} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜒𝑥𝐵))
74, 6sylibr 237 1 (𝜑 → {𝑥𝐴𝜒} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088  wnf 1790  wcel 2114  wnfc 2879  wral 3053  {crab 3057  wss 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rab 3062  df-v 3400  df-in 3850  df-ss 3860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator