| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrd | Structured version Visualization version GIF version | ||
| Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
| ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
| ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
| ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | dfssf 3954 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2810 df-nfc 2886 df-ss 3948 |
| This theorem is referenced by: rabss3d 4061 neiptopnei 23075 topdifinffinlem 37370 relowlssretop 37386 ralssiun 37430 sticksstones1 42164 sticksstones11 42174 ssdf2 45132 ssfiunibd 45305 stoweidlem52 46048 stoweidlem59 46055 |
| Copyright terms: Public domain | W3C validator |