MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrd Structured version   Visualization version   GIF version

Theorem ssrd 4000
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
ssrd.0 𝑥𝜑
ssrd.1 𝑥𝐴
ssrd.2 𝑥𝐵
ssrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
ssrd (𝜑𝐴𝐵)

Proof of Theorem ssrd
StepHypRef Expression
1 ssrd.0 . . 3 𝑥𝜑
2 ssrd.3 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
31, 2alrimi 2211 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
4 ssrd.1 . . 3 𝑥𝐴
5 ssrd.2 . . 3 𝑥𝐵
64, 5dfssf 3986 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
73, 6sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1780  wcel 2106  wnfc 2888  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-clel 2814  df-nfc 2890  df-ss 3980
This theorem is referenced by:  rabss3d  4091  neiptopnei  23156  topdifinffinlem  37330  relowlssretop  37346  ralssiun  37390  sticksstones1  42128  sticksstones11  42138  ssdf2  45081  ssfiunibd  45260  stoweidlem52  46008  stoweidlem59  46015
  Copyright terms: Public domain W3C validator