Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrd | Structured version Visualization version GIF version |
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 2206 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | dfss2f 3911 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: neiptopnei 22283 rabss3d 30861 topdifinffinlem 35518 relowlssretop 35534 ralssiun 35578 sticksstones1 40102 sticksstones11 40112 ssdf2 42690 ssfiunibd 42848 stoweidlem52 43593 stoweidlem59 43600 |
Copyright terms: Public domain | W3C validator |