| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrd | Structured version Visualization version GIF version | ||
| Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
| ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
| ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
| ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2216 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | dfssf 3920 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ss 3914 |
| This theorem is referenced by: rabss3d 4028 neiptopnei 23047 topdifinffinlem 37389 relowlssretop 37405 ralssiun 37449 sticksstones1 42187 sticksstones11 42197 ssdf2 45186 ssfiunibd 45358 stoweidlem52 46098 stoweidlem59 46105 |
| Copyright terms: Public domain | W3C validator |