MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrd Structured version   Visualization version   GIF version

Theorem ssrd 3948
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
ssrd.0 𝑥𝜑
ssrd.1 𝑥𝐴
ssrd.2 𝑥𝐵
ssrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
ssrd (𝜑𝐴𝐵)

Proof of Theorem ssrd
StepHypRef Expression
1 ssrd.0 . . 3 𝑥𝜑
2 ssrd.3 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
31, 2alrimi 2214 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
4 ssrd.1 . . 3 𝑥𝐴
5 ssrd.2 . . 3 𝑥𝐵
64, 5dfssf 3934 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
73, 6sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783  wcel 2109  wnfc 2876  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-clel 2803  df-nfc 2878  df-ss 3928
This theorem is referenced by:  rabss3d  4040  neiptopnei  22995  topdifinffinlem  37308  relowlssretop  37324  ralssiun  37368  sticksstones1  42107  sticksstones11  42117  ssdf2  45108  ssfiunibd  45280  stoweidlem52  46023  stoweidlem59  46030
  Copyright terms: Public domain W3C validator