![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrd | Structured version Visualization version GIF version |
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 2206 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | dfss2f 3971 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-in 3954 df-ss 3964 |
This theorem is referenced by: rabss3d 4078 neiptopnei 22627 topdifinffinlem 36216 relowlssretop 36232 ralssiun 36276 sticksstones1 40950 sticksstones11 40960 ssdf2 43815 ssfiunibd 44005 stoweidlem52 44754 stoweidlem59 44761 |
Copyright terms: Public domain | W3C validator |