![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrd | Structured version Visualization version GIF version |
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 2202 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | dfss2f 3969 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2879 ⊆ wss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3472 df-in 3952 df-ss 3962 |
This theorem is referenced by: rabss3d 4076 neiptopnei 23030 topdifinffinlem 36821 relowlssretop 36837 ralssiun 36881 sticksstones1 41613 sticksstones11 41623 ssdf2 44498 ssfiunibd 44682 stoweidlem52 45431 stoweidlem59 45438 |
Copyright terms: Public domain | W3C validator |