Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdifcl | Structured version Visualization version GIF version |
Description: The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
Ref | Expression |
---|---|
ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
Ref | Expression |
---|---|
ssdifcl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
2 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
3 | 2 | difexi 5247 | . 2 ⊢ (𝑥 ∖ 𝑦) ∈ V |
4 | sseq1 3942 | . 2 ⊢ (𝑧 = (𝑥 ∖ 𝑦) → (𝑧 ⊆ 𝐵 ↔ (𝑥 ∖ 𝑦) ⊆ 𝐵)) | |
5 | sseq1 3942 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
6 | sseq1 3942 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
7 | ssdifss 4066 | . . 3 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∖ 𝑦) ⊆ 𝐵) | |
8 | 7 | adantr 480 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝑥 ∖ 𝑦) ⊆ 𝐵) |
9 | 1, 3, 4, 5, 6, 8 | cllem0 41062 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |