Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdifcl | Structured version Visualization version GIF version |
Description: The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
Ref | Expression |
---|---|
ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
Ref | Expression |
---|---|
ssdifcl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
2 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
3 | 2 | difexi 5252 | . 2 ⊢ (𝑥 ∖ 𝑦) ∈ V |
4 | sseq1 3946 | . 2 ⊢ (𝑧 = (𝑥 ∖ 𝑦) → (𝑧 ⊆ 𝐵 ↔ (𝑥 ∖ 𝑦) ⊆ 𝐵)) | |
5 | sseq1 3946 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
6 | sseq1 3946 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
7 | ssdifss 4070 | . . 3 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∖ 𝑦) ⊆ 𝐵) | |
8 | 7 | adantr 481 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝑥 ∖ 𝑦) ⊆ 𝐵) |
9 | 1, 3, 4, 5, 6, 8 | cllem0 41173 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |