Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuncl Structured version   Visualization version   GIF version

Theorem ssuncl 43673
Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.)
Hypothesis
Ref Expression
ssficl.a 𝐴 = {𝑧𝑧𝐵}
Assertion
Ref Expression
ssuncl 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem ssuncl
StepHypRef Expression
1 ssficl.a . 2 𝐴 = {𝑧𝑧𝐵}
2 vex 3440 . . 3 𝑥 ∈ V
3 vex 3440 . . 3 𝑦 ∈ V
42, 3unex 7677 . 2 (𝑥𝑦) ∈ V
5 sseq1 3955 . 2 (𝑧 = (𝑥𝑦) → (𝑧𝐵 ↔ (𝑥𝑦) ⊆ 𝐵))
6 sseq1 3955 . 2 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
7 sseq1 3955 . 2 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8 unss 4137 . . 3 ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝑦) ⊆ 𝐵)
98biimpi 216 . 2 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ⊆ 𝐵)
101, 4, 5, 6, 7, 9cllem0 43669 1 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  cun 3895  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator