| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuncl | Structured version Visualization version GIF version | ||
| Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
| Ref | Expression |
|---|---|
| ssuncl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
| 2 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | unex 7677 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 5 | sseq1 3955 | . 2 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → (𝑧 ⊆ 𝐵 ↔ (𝑥 ∪ 𝑦) ⊆ 𝐵)) | |
| 6 | sseq1 3955 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 7 | sseq1 3955 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
| 8 | unss 4137 | . . 3 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) ↔ (𝑥 ∪ 𝑦) ⊆ 𝐵) | |
| 9 | 8 | biimpi 216 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝑥 ∪ 𝑦) ⊆ 𝐵) |
| 10 | 1, 4, 5, 6, 7, 9 | cllem0 43669 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |