Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuncl Structured version   Visualization version   GIF version

Theorem ssuncl 41130
Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.)
Hypothesis
Ref Expression
ssficl.a 𝐴 = {𝑧𝑧𝐵}
Assertion
Ref Expression
ssuncl 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem ssuncl
StepHypRef Expression
1 ssficl.a . 2 𝐴 = {𝑧𝑧𝐵}
2 vex 3434 . . 3 𝑥 ∈ V
3 vex 3434 . . 3 𝑦 ∈ V
42, 3unex 7587 . 2 (𝑥𝑦) ∈ V
5 sseq1 3950 . 2 (𝑧 = (𝑥𝑦) → (𝑧𝐵 ↔ (𝑥𝑦) ⊆ 𝐵))
6 sseq1 3950 . 2 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
7 sseq1 3950 . 2 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8 unss 4122 . . 3 ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝑦) ⊆ 𝐵)
98biimpi 215 . 2 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ⊆ 𝐵)
101, 4, 5, 6, 7, 9cllem0 41126 1 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2109  {cab 2716  wral 3065  Vcvv 3430  cun 3889  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-pr 4569  df-uni 4845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator