Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuncl | Structured version Visualization version GIF version |
Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
Ref | Expression |
---|---|
ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
Ref | Expression |
---|---|
ssuncl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
2 | vex 3441 | . . 3 ⊢ 𝑥 ∈ V | |
3 | vex 3441 | . . 3 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | unex 7628 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
5 | sseq1 3951 | . 2 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → (𝑧 ⊆ 𝐵 ↔ (𝑥 ∪ 𝑦) ⊆ 𝐵)) | |
6 | sseq1 3951 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
7 | sseq1 3951 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
8 | unss 4124 | . . 3 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) ↔ (𝑥 ∪ 𝑦) ⊆ 𝐵) | |
9 | 8 | biimpi 215 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝑥 ∪ 𝑦) ⊆ 𝐵) |
10 | 1, 4, 5, 6, 7, 9 | cllem0 41211 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 ∀wral 3062 Vcvv 3437 ∪ cun 3890 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4566 df-pr 4568 df-uni 4845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |