Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuncl Structured version   Visualization version   GIF version

Theorem ssuncl 42306
Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.)
Hypothesis
Ref Expression
ssficl.a 𝐴 = {𝑧𝑧𝐵}
Assertion
Ref Expression
ssuncl 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem ssuncl
StepHypRef Expression
1 ssficl.a . 2 𝐴 = {𝑧𝑧𝐵}
2 vex 3478 . . 3 𝑥 ∈ V
3 vex 3478 . . 3 𝑦 ∈ V
42, 3unex 7729 . 2 (𝑥𝑦) ∈ V
5 sseq1 4006 . 2 (𝑧 = (𝑥𝑦) → (𝑧𝐵 ↔ (𝑥𝑦) ⊆ 𝐵))
6 sseq1 4006 . 2 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
7 sseq1 4006 . 2 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8 unss 4183 . . 3 ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝑦) ⊆ 𝐵)
98biimpi 215 . 2 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦) ⊆ 𝐵)
101, 4, 5, 6, 7, 9cllem0 42302 1 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  {cab 2709  wral 3061  Vcvv 3474  cun 3945  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-pr 4630  df-uni 4908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator