| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5279. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5279 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-in 3918 df-ss 3928 |
| This theorem is referenced by: oev 8455 naddcllem 8617 sbthlem2 9029 findcard 9104 findcard2 9105 pssnn 9109 ssfi 9114 frfi 9208 unfilem3 9232 marypha1lem 9360 wemapso 9480 inf3lem3 9559 dfac9 10066 dfacacn 10071 kmlem11 10090 kmlem12 10091 fin23lem28 10269 isf32lem6 10287 isf32lem7 10288 isf32lem8 10289 domtriomlem 10371 axdc2lem 10377 axcclem 10386 zornn0g 10434 konigthlem 10497 grothprim 10763 hashbclem 14393 fi1uzind 14448 brfi1uzind 14449 brfi1indALT 14451 opfi1uzind 14452 ramub1lem1 16973 pltfval 18266 isirred 20304 cntzsdrg 20687 subdrgint 20688 lssset 20815 xrs1mnd 21297 xrs10 21298 xrs1cmn 21299 xrge0subm 21300 xrge0cmn 21301 cnmsgngrp 21464 psgninv 21467 psdmul 22029 neitr 23043 lecldbas 23082 imasdsf1olem 24237 xrge0gsumle 24698 xrge0tsms 24699 i1fd 25558 lhop1lem 25894 reefgim 26336 cxpcn2 26632 logbmpt 26674 newval 27739 newf 27742 addsval 27845 mulsval 27988 nnsex 28187 axlowdimlem15 28859 axlowdim 28864 elntg 28887 uhgrspan1lem1 29203 upgrres1lem1 29212 nbgrval 29239 nbfusgrlevtxm1 29280 cusgrfilem3 29361 vtxdginducedm1lem1 29443 vtxdginducedm1fi 29448 finsumvtxdg2ssteplem4 29452 rprmval 33460 dimkerim 33596 onvf1odlem2 35064 satfv1lem 35322 satfdm 35329 satffunlem1lem2 35363 satffunlem2lem2 35366 watvalN 39960 hvmapfval 41726 prjspval 42564 setindtr 42986 ssdifcl 43533 sssymdifcl 43534 clsk3nimkb 44002 iundjiunlem 46430 meaiuninclem 46451 meaiininclem 46457 lines 48693 |
| Copyright terms: Public domain | W3C validator |