![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version |
Description: Existence of a difference, inference version of difexg 5347. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
difexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | difexg 5347 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 |
This theorem is referenced by: oev 8570 naddcllem 8732 sbthlem2 9150 findcard 9229 findcard2 9230 pssnn 9234 ssfi 9240 phplem2OLD 9281 phpOLD 9285 frfi 9349 unfilem3 9373 marypha1lem 9502 wemapso 9620 inf3lem3 9699 dfac9 10206 dfacacn 10211 kmlem11 10230 kmlem12 10231 fin23lem28 10409 isf32lem6 10427 isf32lem7 10428 isf32lem8 10429 domtriomlem 10511 axdc2lem 10517 axcclem 10526 zornn0g 10574 konigthlem 10637 grothprim 10903 hashbclem 14501 fi1uzind 14556 brfi1uzind 14557 brfi1indALT 14559 opfi1uzind 14560 ramub1lem1 17073 pltfval 18401 isirred 20445 cntzsdrg 20825 subdrgint 20826 lssset 20954 xrs1mnd 21445 xrs10 21446 xrs1cmn 21447 xrge0subm 21448 xrge0cmn 21449 cnmsgngrp 21620 psgninv 21623 psdmul 22193 neitr 23209 lecldbas 23248 imasdsf1olem 24404 xrge0gsumle 24874 xrge0tsms 24875 i1fd 25735 lhop1lem 26072 reefgim 26512 cxpcn2 26807 logbmpt 26849 newval 27912 newf 27915 addsval 28013 mulsval 28153 nnsex 28341 axlowdimlem15 28989 axlowdim 28994 elntg 29017 uhgrspan1lem1 29335 upgrres1lem1 29344 nbgrval 29371 nbfusgrlevtxm1 29412 cusgrfilem3 29493 vtxdginducedm1lem1 29575 vtxdginducedm1fi 29580 finsumvtxdg2ssteplem4 29584 rprmval 33509 dimkerim 33640 satfv1lem 35330 satfdm 35337 satffunlem1lem2 35371 satffunlem2lem2 35374 watvalN 39950 hvmapfval 41716 prjspval 42558 setindtr 42981 ssdifcl 43533 sssymdifcl 43534 clsk3nimkb 44002 iundjiunlem 46380 meaiuninclem 46401 meaiininclem 46407 lines 48465 |
Copyright terms: Public domain | W3C validator |