| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5271. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5271 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 |
| This theorem is referenced by: oev 8438 naddcllem 8600 sbthlem2 9012 findcard 9084 findcard2 9085 pssnn 9089 ssfi 9093 frfi 9180 unfilem3 9202 marypha1lem 9328 wemapso 9448 inf3lem3 9531 dfac9 10039 dfacacn 10044 kmlem11 10063 kmlem12 10064 fin23lem28 10242 isf32lem6 10260 isf32lem7 10261 isf32lem8 10262 domtriomlem 10344 axdc2lem 10350 axcclem 10359 zornn0g 10407 konigthlem 10470 grothprim 10736 hashbclem 14366 fi1uzind 14421 brfi1uzind 14422 brfi1indALT 14424 opfi1uzind 14425 ramub1lem1 16945 pltfval 18243 isirred 20346 cntzsdrg 20726 subdrgint 20727 lssset 20875 xrs1mnd 21386 xrs10 21387 xrs1cmn 21388 xrge0subm 21389 xrge0cmn 21390 cnmsgngrp 21525 psgninv 21528 psdmul 22100 neitr 23115 lecldbas 23154 imasdsf1olem 24308 xrge0gsumle 24769 xrge0tsms 24770 i1fd 25629 lhop1lem 25965 reefgim 26407 cxpcn2 26703 logbmpt 26745 newval 27816 newf 27819 addsval 27925 mulsval 28068 nnsex 28267 axlowdimlem15 28955 axlowdim 28960 elntg 28983 uhgrspan1lem1 29299 upgrres1lem1 29308 nbgrval 29335 nbfusgrlevtxm1 29376 cusgrfilem3 29457 vtxdginducedm1lem1 29539 vtxdginducedm1fi 29544 finsumvtxdg2ssteplem4 29548 rprmval 33525 dimkerim 33712 onvf1odlem2 35220 satfv1lem 35478 satfdm 35485 satffunlem1lem2 35519 satffunlem2lem2 35522 watvalN 40165 hvmapfval 41931 prjspval 42761 setindtr 43181 ssdifcl 43728 sssymdifcl 43729 clsk3nimkb 44197 iundjiunlem 46619 meaiuninclem 46640 meaiininclem 46646 lines 48893 |
| Copyright terms: Public domain | W3C validator |