| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5284. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5284 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 |
| This theorem is referenced by: oev 8478 naddcllem 8640 sbthlem2 9052 findcard 9127 findcard2 9128 pssnn 9132 ssfi 9137 frfi 9232 unfilem3 9256 marypha1lem 9384 wemapso 9504 inf3lem3 9583 dfac9 10090 dfacacn 10095 kmlem11 10114 kmlem12 10115 fin23lem28 10293 isf32lem6 10311 isf32lem7 10312 isf32lem8 10313 domtriomlem 10395 axdc2lem 10401 axcclem 10410 zornn0g 10458 konigthlem 10521 grothprim 10787 hashbclem 14417 fi1uzind 14472 brfi1uzind 14473 brfi1indALT 14475 opfi1uzind 14476 ramub1lem1 16997 pltfval 18290 isirred 20328 cntzsdrg 20711 subdrgint 20712 lssset 20839 xrs1mnd 21321 xrs10 21322 xrs1cmn 21323 xrge0subm 21324 xrge0cmn 21325 cnmsgngrp 21488 psgninv 21491 psdmul 22053 neitr 23067 lecldbas 23106 imasdsf1olem 24261 xrge0gsumle 24722 xrge0tsms 24723 i1fd 25582 lhop1lem 25918 reefgim 26360 cxpcn2 26656 logbmpt 26698 newval 27763 newf 27766 addsval 27869 mulsval 28012 nnsex 28211 axlowdimlem15 28883 axlowdim 28888 elntg 28911 uhgrspan1lem1 29227 upgrres1lem1 29236 nbgrval 29263 nbfusgrlevtxm1 29304 cusgrfilem3 29385 vtxdginducedm1lem1 29467 vtxdginducedm1fi 29472 finsumvtxdg2ssteplem4 29476 rprmval 33487 dimkerim 33623 onvf1odlem2 35091 satfv1lem 35349 satfdm 35356 satffunlem1lem2 35390 satffunlem2lem2 35393 watvalN 39987 hvmapfval 41753 prjspval 42591 setindtr 43013 ssdifcl 43560 sssymdifcl 43561 clsk3nimkb 44029 iundjiunlem 46457 meaiuninclem 46478 meaiininclem 46484 lines 48720 |
| Copyright terms: Public domain | W3C validator |