| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5287. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5287 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 |
| This theorem is referenced by: oev 8481 naddcllem 8643 sbthlem2 9058 findcard 9133 findcard2 9134 pssnn 9138 ssfi 9143 frfi 9239 unfilem3 9263 marypha1lem 9391 wemapso 9511 inf3lem3 9590 dfac9 10097 dfacacn 10102 kmlem11 10121 kmlem12 10122 fin23lem28 10300 isf32lem6 10318 isf32lem7 10319 isf32lem8 10320 domtriomlem 10402 axdc2lem 10408 axcclem 10417 zornn0g 10465 konigthlem 10528 grothprim 10794 hashbclem 14424 fi1uzind 14479 brfi1uzind 14480 brfi1indALT 14482 opfi1uzind 14483 ramub1lem1 17004 pltfval 18297 isirred 20335 cntzsdrg 20718 subdrgint 20719 lssset 20846 xrs1mnd 21328 xrs10 21329 xrs1cmn 21330 xrge0subm 21331 xrge0cmn 21332 cnmsgngrp 21495 psgninv 21498 psdmul 22060 neitr 23074 lecldbas 23113 imasdsf1olem 24268 xrge0gsumle 24729 xrge0tsms 24730 i1fd 25589 lhop1lem 25925 reefgim 26367 cxpcn2 26663 logbmpt 26705 newval 27770 newf 27773 addsval 27876 mulsval 28019 nnsex 28218 axlowdimlem15 28890 axlowdim 28895 elntg 28918 uhgrspan1lem1 29234 upgrres1lem1 29243 nbgrval 29270 nbfusgrlevtxm1 29311 cusgrfilem3 29392 vtxdginducedm1lem1 29474 vtxdginducedm1fi 29479 finsumvtxdg2ssteplem4 29483 rprmval 33494 dimkerim 33630 onvf1odlem2 35098 satfv1lem 35356 satfdm 35363 satffunlem1lem2 35397 satffunlem2lem2 35400 watvalN 39994 hvmapfval 41760 prjspval 42598 setindtr 43020 ssdifcl 43567 sssymdifcl 43568 clsk3nimkb 44036 iundjiunlem 46464 meaiuninclem 46485 meaiininclem 46491 lines 48724 |
| Copyright terms: Public domain | W3C validator |