![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version |
Description: Existence of a difference, inference version of difexg 5328. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
difexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | difexg 5328 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 |
This theorem is referenced by: oev 8514 naddcllem 8675 sbthlem2 9084 findcard 9163 findcard2 9164 pssnn 9168 ssfi 9173 phplem2OLD 9218 phpOLD 9222 pssnnOLD 9265 findcard2OLD 9284 frfi 9288 unfilem3 9312 marypha1lem 9428 wemapso 9546 inf3lem3 9625 dfac9 10131 dfacacn 10136 kmlem11 10155 kmlem12 10156 fin23lem28 10335 isf32lem6 10353 isf32lem7 10354 isf32lem8 10355 domtriomlem 10437 axdc2lem 10443 axcclem 10452 zornn0g 10500 konigthlem 10563 grothprim 10829 hashbclem 14411 fi1uzind 14458 brfi1uzind 14459 brfi1indALT 14461 opfi1uzind 14462 ramub1lem1 16959 pltfval 18284 isirred 20233 cntzsdrg 20418 subdrgint 20419 lssset 20544 xrs1mnd 20983 xrs10 20984 xrs1cmn 20985 xrge0subm 20986 xrge0cmn 20987 cnmsgngrp 21132 psgninv 21135 neitr 22684 lecldbas 22723 imasdsf1olem 23879 xrge0gsumle 24349 xrge0tsms 24350 i1fd 25198 lhop1lem 25530 reefgim 25962 cxpcn2 26254 logbmpt 26293 newval 27351 newf 27354 addsval 27448 mulsval 27568 nnsex 27698 axlowdimlem15 28245 axlowdim 28250 elntg 28273 uhgrspan1lem1 28588 upgrres1lem1 28597 nbgrval 28624 nbfusgrlevtxm1 28665 cusgrfilem3 28745 vtxdginducedm1lem1 28827 vtxdginducedm1fi 28832 finsumvtxdg2ssteplem4 28836 rprmval 32664 dimkerim 32743 satfv1lem 34384 satfdm 34391 satffunlem1lem2 34425 satffunlem2lem2 34428 watvalN 38912 hvmapfval 40678 prjspval 41393 setindtr 41811 ssdifcl 42370 sssymdifcl 42371 clsk3nimkb 42839 iundjiunlem 45223 meaiuninclem 45244 meaiininclem 45250 lines 47465 |
Copyright terms: Public domain | W3C validator |