MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difexi Structured version   Visualization version   GIF version

Theorem difexi 5263
Description: Existence of a difference, inference version of difexg 5262. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
difexi.1 𝐴 ∈ V
Assertion
Ref Expression
difexi (𝐴𝐵) ∈ V

Proof of Theorem difexi
StepHypRef Expression
1 difexi.1 . 2 𝐴 ∈ V
2 difexg 5262 . 2 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cdif 3894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914
This theorem is referenced by:  oev  8424  naddcllem  8586  sbthlem2  8996  findcard  9068  findcard2  9069  pssnn  9073  ssfi  9077  frfi  9164  unfilem3  9186  marypha1lem  9312  wemapso  9432  inf3lem3  9515  dfac9  10023  dfacacn  10028  kmlem11  10047  kmlem12  10048  fin23lem28  10226  isf32lem6  10244  isf32lem7  10245  isf32lem8  10246  domtriomlem  10328  axdc2lem  10334  axcclem  10343  zornn0g  10391  konigthlem  10454  grothprim  10720  hashbclem  14354  fi1uzind  14409  brfi1uzind  14410  brfi1indALT  14412  opfi1uzind  14413  ramub1lem1  16933  pltfval  18230  isirred  20332  cntzsdrg  20712  subdrgint  20713  lssset  20861  xrs1mnd  21372  xrs10  21373  xrs1cmn  21374  xrge0subm  21375  xrge0cmn  21376  cnmsgngrp  21511  psgninv  21514  psdmul  22076  neitr  23090  lecldbas  23129  imasdsf1olem  24283  xrge0gsumle  24744  xrge0tsms  24745  i1fd  25604  lhop1lem  25940  reefgim  26382  cxpcn2  26678  logbmpt  26720  newval  27791  newf  27794  addsval  27900  mulsval  28043  nnsex  28242  axlowdimlem15  28929  axlowdim  28934  elntg  28957  uhgrspan1lem1  29273  upgrres1lem1  29282  nbgrval  29309  nbfusgrlevtxm1  29350  cusgrfilem3  29431  vtxdginducedm1lem1  29513  vtxdginducedm1fi  29518  finsumvtxdg2ssteplem4  29522  rprmval  33473  dimkerim  33632  onvf1odlem2  35140  satfv1lem  35398  satfdm  35405  satffunlem1lem2  35439  satffunlem2lem2  35442  watvalN  40032  hvmapfval  41798  prjspval  42636  setindtr  43057  ssdifcl  43604  sssymdifcl  43605  clsk3nimkb  44073  iundjiunlem  46497  meaiuninclem  46518  meaiininclem  46524  lines  48763
  Copyright terms: Public domain W3C validator