![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version |
Description: Existence of a difference, inference version of difexg 5326. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
difexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | difexg 5326 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3464 ∖ cdif 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3421 df-v 3466 df-dif 3951 df-in 3955 df-ss 3965 |
This theorem is referenced by: oev 8535 naddcllem 8697 sbthlem2 9113 findcard 9192 findcard2 9193 pssnn 9197 ssfi 9203 phplem2OLD 9244 phpOLD 9248 pssnnOLD 9291 findcard2OLD 9310 frfi 9314 unfilem3 9338 marypha1lem 9468 wemapso 9586 inf3lem3 9665 dfac9 10171 dfacacn 10176 kmlem11 10195 kmlem12 10196 fin23lem28 10373 isf32lem6 10391 isf32lem7 10392 isf32lem8 10393 domtriomlem 10475 axdc2lem 10481 axcclem 10490 zornn0g 10538 konigthlem 10601 grothprim 10867 hashbclem 14463 fi1uzind 14510 brfi1uzind 14511 brfi1indALT 14513 opfi1uzind 14514 ramub1lem1 17022 pltfval 18350 isirred 20396 cntzsdrg 20776 subdrgint 20777 lssset 20905 xrs1mnd 21396 xrs10 21397 xrs1cmn 21398 xrge0subm 21399 xrge0cmn 21400 cnmsgngrp 21570 psgninv 21573 psdmul 22155 neitr 23171 lecldbas 23210 imasdsf1olem 24366 xrge0gsumle 24836 xrge0tsms 24837 i1fd 25697 lhop1lem 26033 reefgim 26476 cxpcn2 26770 logbmpt 26812 newval 27875 newf 27878 addsval 27972 mulsval 28106 nnsex 28287 axlowdimlem15 28886 axlowdim 28891 elntg 28914 uhgrspan1lem1 29232 upgrres1lem1 29241 nbgrval 29268 nbfusgrlevtxm1 29309 cusgrfilem3 29390 vtxdginducedm1lem1 29472 vtxdginducedm1fi 29477 finsumvtxdg2ssteplem4 29481 rprmval 33396 dimkerim 33527 satfv1lem 35202 satfdm 35209 satffunlem1lem2 35243 satffunlem2lem2 35246 watvalN 39704 hvmapfval 41470 prjspval 42292 setindtr 42718 ssdifcl 43274 sssymdifcl 43275 clsk3nimkb 43743 iundjiunlem 46115 meaiuninclem 46136 meaiininclem 46142 lines 48154 |
Copyright terms: Public domain | W3C validator |