Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version |
Description: Existence of a difference, inference version of difexg 5251. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
difexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | difexg 5251 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: oev 8344 sbthlem2 8871 findcard 8946 findcard2 8947 pssnn 8951 ssfi 8956 phplem2OLD 9001 phpOLD 9005 pssnnOLD 9040 findcard2OLD 9056 frfi 9059 unfilem3 9080 marypha1lem 9192 wemapso 9310 inf3lem3 9388 dfac9 9892 dfacacn 9897 kmlem11 9916 kmlem12 9917 fin23lem28 10096 isf32lem6 10114 isf32lem7 10115 isf32lem8 10116 domtriomlem 10198 axdc2lem 10204 axcclem 10213 zornn0g 10261 konigthlem 10324 grothprim 10590 hashbclem 14164 fi1uzind 14211 brfi1uzind 14212 brfi1indALT 14214 opfi1uzind 14215 ramub1lem1 16727 pltfval 18049 isirred 19941 cntzsdrg 20070 subdrgint 20071 lssset 20195 xrs1mnd 20636 xrs10 20637 xrs1cmn 20638 xrge0subm 20639 xrge0cmn 20640 cnmsgngrp 20784 psgninv 20787 neitr 22331 lecldbas 22370 imasdsf1olem 23526 xrge0gsumle 23996 xrge0tsms 23997 i1fd 24845 lhop1lem 25177 reefgim 25609 cxpcn2 25899 logbmpt 25938 axlowdimlem15 27324 axlowdim 27329 elntg 27352 uhgrspan1lem1 27667 upgrres1lem1 27676 nbgrval 27703 nbfusgrlevtxm1 27744 cusgrfilem3 27824 vtxdginducedm1lem1 27906 vtxdginducedm1fi 27911 finsumvtxdg2ssteplem4 27915 rprmval 31664 dimkerim 31708 satfv1lem 33324 satfdm 33331 satffunlem1lem2 33365 satffunlem2lem2 33368 naddcllem 33831 newval 34039 newf 34042 addsval 34126 watvalN 38007 hvmapfval 39773 prjspval 40442 setindtr 40846 ssdifcl 41178 sssymdifcl 41179 clsk3nimkb 41650 iundjiunlem 43997 meaiuninclem 44018 meaiininclem 44024 lines 46077 |
Copyright terms: Public domain | W3C validator |