| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5262. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5262 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 |
| This theorem is referenced by: oev 8424 naddcllem 8586 sbthlem2 8996 findcard 9068 findcard2 9069 pssnn 9073 ssfi 9077 frfi 9164 unfilem3 9186 marypha1lem 9312 wemapso 9432 inf3lem3 9515 dfac9 10023 dfacacn 10028 kmlem11 10047 kmlem12 10048 fin23lem28 10226 isf32lem6 10244 isf32lem7 10245 isf32lem8 10246 domtriomlem 10328 axdc2lem 10334 axcclem 10343 zornn0g 10391 konigthlem 10454 grothprim 10720 hashbclem 14354 fi1uzind 14409 brfi1uzind 14410 brfi1indALT 14412 opfi1uzind 14413 ramub1lem1 16933 pltfval 18230 isirred 20332 cntzsdrg 20712 subdrgint 20713 lssset 20861 xrs1mnd 21372 xrs10 21373 xrs1cmn 21374 xrge0subm 21375 xrge0cmn 21376 cnmsgngrp 21511 psgninv 21514 psdmul 22076 neitr 23090 lecldbas 23129 imasdsf1olem 24283 xrge0gsumle 24744 xrge0tsms 24745 i1fd 25604 lhop1lem 25940 reefgim 26382 cxpcn2 26678 logbmpt 26720 newval 27791 newf 27794 addsval 27900 mulsval 28043 nnsex 28242 axlowdimlem15 28929 axlowdim 28934 elntg 28957 uhgrspan1lem1 29273 upgrres1lem1 29282 nbgrval 29309 nbfusgrlevtxm1 29350 cusgrfilem3 29431 vtxdginducedm1lem1 29513 vtxdginducedm1fi 29518 finsumvtxdg2ssteplem4 29522 rprmval 33473 dimkerim 33632 onvf1odlem2 35140 satfv1lem 35398 satfdm 35405 satffunlem1lem2 35439 satffunlem2lem2 35442 watvalN 40032 hvmapfval 41798 prjspval 42636 setindtr 43057 ssdifcl 43604 sssymdifcl 43605 clsk3nimkb 44073 iundjiunlem 46497 meaiuninclem 46518 meaiininclem 46524 lines 48763 |
| Copyright terms: Public domain | W3C validator |