| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5271. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5271 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-ss 3922 |
| This theorem is referenced by: oev 8439 naddcllem 8601 sbthlem2 9012 findcard 9087 findcard2 9088 pssnn 9092 ssfi 9097 frfi 9190 unfilem3 9214 marypha1lem 9342 wemapso 9462 inf3lem3 9545 dfac9 10050 dfacacn 10055 kmlem11 10074 kmlem12 10075 fin23lem28 10253 isf32lem6 10271 isf32lem7 10272 isf32lem8 10273 domtriomlem 10355 axdc2lem 10361 axcclem 10370 zornn0g 10418 konigthlem 10481 grothprim 10747 hashbclem 14378 fi1uzind 14433 brfi1uzind 14434 brfi1indALT 14436 opfi1uzind 14437 ramub1lem1 16957 pltfval 18254 isirred 20323 cntzsdrg 20706 subdrgint 20707 lssset 20855 xrs1mnd 21366 xrs10 21367 xrs1cmn 21368 xrge0subm 21369 xrge0cmn 21370 cnmsgngrp 21505 psgninv 21508 psdmul 22070 neitr 23084 lecldbas 23123 imasdsf1olem 24278 xrge0gsumle 24739 xrge0tsms 24740 i1fd 25599 lhop1lem 25935 reefgim 26377 cxpcn2 26673 logbmpt 26715 newval 27784 newf 27787 addsval 27893 mulsval 28036 nnsex 28235 axlowdimlem15 28920 axlowdim 28925 elntg 28948 uhgrspan1lem1 29264 upgrres1lem1 29273 nbgrval 29300 nbfusgrlevtxm1 29341 cusgrfilem3 29422 vtxdginducedm1lem1 29504 vtxdginducedm1fi 29509 finsumvtxdg2ssteplem4 29513 rprmval 33472 dimkerim 33613 onvf1odlem2 35096 satfv1lem 35354 satfdm 35361 satffunlem1lem2 35395 satffunlem2lem2 35398 watvalN 39992 hvmapfval 41758 prjspval 42596 setindtr 43017 ssdifcl 43564 sssymdifcl 43565 clsk3nimkb 44033 iundjiunlem 46460 meaiuninclem 46481 meaiininclem 46487 lines 48736 |
| Copyright terms: Public domain | W3C validator |