Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version |
Description: Existence of a difference, inference version of difexg 5246. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
difexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | difexg 5246 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: oev 8306 sbthlem2 8824 phplem2 8893 php 8897 findcard 8908 findcard2 8909 pssnn 8913 ssfi 8918 pssnnOLD 8969 findcard2OLD 8986 frfi 8989 unfilem3 9010 marypha1lem 9122 wemapso 9240 inf3lem3 9318 dfac9 9823 dfacacn 9828 kmlem11 9847 kmlem12 9848 fin23lem28 10027 isf32lem6 10045 isf32lem7 10046 isf32lem8 10047 domtriomlem 10129 axdc2lem 10135 axcclem 10144 zornn0g 10192 konigthlem 10255 grothprim 10521 hashbclem 14092 fi1uzind 14139 brfi1uzind 14140 brfi1indALT 14142 opfi1uzind 14143 ramub1lem1 16655 pltfval 17964 isirred 19856 cntzsdrg 19985 subdrgint 19986 lssset 20110 xrs1mnd 20548 xrs10 20549 xrs1cmn 20550 xrge0subm 20551 xrge0cmn 20552 cnmsgngrp 20696 psgninv 20699 neitr 22239 lecldbas 22278 imasdsf1olem 23434 xrge0gsumle 23902 xrge0tsms 23903 i1fd 24750 lhop1lem 25082 reefgim 25514 cxpcn2 25804 logbmpt 25843 axlowdimlem15 27227 axlowdim 27232 elntg 27255 uhgrspan1lem1 27570 upgrres1lem1 27579 nbgrval 27606 nbfusgrlevtxm1 27647 cusgrfilem3 27727 vtxdginducedm1lem1 27809 vtxdginducedm1fi 27814 finsumvtxdg2ssteplem4 27818 rprmval 31566 dimkerim 31610 satfv1lem 33224 satfdm 33231 satffunlem1lem2 33265 satffunlem2lem2 33268 naddcllem 33758 newval 33966 newf 33969 addsval 34053 watvalN 37934 hvmapfval 39700 prjspval 40363 setindtr 40762 ssdifcl 41067 sssymdifcl 41068 clsk3nimkb 41539 iundjiunlem 43887 meaiuninclem 43908 meaiininclem 43914 lines 45965 |
Copyright terms: Public domain | W3C validator |