| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version | ||
| Description: Existence of a difference, inference version of difexg 5299. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| difexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | difexg 5299 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 |
| This theorem is referenced by: oev 8524 naddcllem 8686 sbthlem2 9096 findcard 9175 findcard2 9176 pssnn 9180 ssfi 9185 phplem2OLD 9227 phpOLD 9229 frfi 9291 unfilem3 9315 marypha1lem 9443 wemapso 9563 inf3lem3 9642 dfac9 10149 dfacacn 10154 kmlem11 10173 kmlem12 10174 fin23lem28 10352 isf32lem6 10370 isf32lem7 10371 isf32lem8 10372 domtriomlem 10454 axdc2lem 10460 axcclem 10469 zornn0g 10517 konigthlem 10580 grothprim 10846 hashbclem 14468 fi1uzind 14523 brfi1uzind 14524 brfi1indALT 14526 opfi1uzind 14527 ramub1lem1 17044 pltfval 18339 isirred 20377 cntzsdrg 20760 subdrgint 20761 lssset 20888 xrs1mnd 21370 xrs10 21371 xrs1cmn 21372 xrge0subm 21373 xrge0cmn 21374 cnmsgngrp 21537 psgninv 21540 psdmul 22102 neitr 23116 lecldbas 23155 imasdsf1olem 24310 xrge0gsumle 24771 xrge0tsms 24772 i1fd 25632 lhop1lem 25968 reefgim 26410 cxpcn2 26706 logbmpt 26748 newval 27811 newf 27814 addsval 27912 mulsval 28052 nnsex 28240 axlowdimlem15 28881 axlowdim 28886 elntg 28909 uhgrspan1lem1 29225 upgrres1lem1 29234 nbgrval 29261 nbfusgrlevtxm1 29302 cusgrfilem3 29383 vtxdginducedm1lem1 29465 vtxdginducedm1fi 29470 finsumvtxdg2ssteplem4 29474 rprmval 33477 dimkerim 33613 satfv1lem 35330 satfdm 35337 satffunlem1lem2 35371 satffunlem2lem2 35374 watvalN 39958 hvmapfval 41724 prjspval 42573 setindtr 42995 ssdifcl 43542 sssymdifcl 43543 clsk3nimkb 44011 iundjiunlem 46436 meaiuninclem 46457 meaiininclem 46463 lines 48659 |
| Copyright terms: Public domain | W3C validator |