![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version |
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
Ref | Expression |
---|---|
ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4145 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
2 | sstr 4003 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3959 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-ss 3979 |
This theorem is referenced by: ssdifssd 4156 xrsupss 13347 xrinfmss 13348 rpnnen2lem12 16257 lpval 23162 lpdifsn 23166 islp2 23168 lpcls 23387 mblfinlem3 37645 mblfinlem4 37646 voliunnfl 37650 redvmptabs 42368 ssdifcl 43560 sssymdifcl 43561 supxrmnf2 45382 infxrpnf2 45412 fourierdlem102 46163 fourierdlem114 46175 lindslinindimp2lem4 48306 lindslinindsimp2lem5 48307 lindslinindsimp2 48308 lincresunit3 48326 |
Copyright terms: Public domain | W3C validator |