![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version |
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
Ref | Expression |
---|---|
ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4159 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
2 | sstr 4017 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3973 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 |
This theorem is referenced by: ssdifssd 4170 xrsupss 13371 xrinfmss 13372 rpnnen2lem12 16273 lpval 23168 lpdifsn 23172 islp2 23174 lpcls 23393 mblfinlem3 37619 mblfinlem4 37620 voliunnfl 37624 ssdifcl 43533 sssymdifcl 43534 supxrmnf2 45348 infxrpnf2 45378 fourierdlem102 46129 fourierdlem114 46141 lindslinindimp2lem4 48190 lindslinindsimp2lem5 48191 lindslinindsimp2 48192 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |