| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version | ||
| Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4087 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
| 2 | sstr 3944 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3900 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 |
| This theorem is referenced by: ssdifssd 4098 xrsupss 13211 xrinfmss 13212 rpnnen2lem12 16134 lpval 23024 lpdifsn 23028 islp2 23030 lpcls 23249 mblfinlem3 37643 mblfinlem4 37644 voliunnfl 37648 redvmptabs 42337 ssdifcl 43548 sssymdifcl 43549 supxrmnf2 45416 infxrpnf2 45446 fourierdlem102 46193 fourierdlem114 46205 lindslinindimp2lem4 48450 lindslinindsimp2lem5 48451 lindslinindsimp2 48452 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |