| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version | ||
| Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4095 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
| 2 | sstr 3952 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3908 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 |
| This theorem is referenced by: ssdifssd 4106 xrsupss 13245 xrinfmss 13246 rpnnen2lem12 16169 lpval 23002 lpdifsn 23006 islp2 23008 lpcls 23227 mblfinlem3 37626 mblfinlem4 37627 voliunnfl 37631 redvmptabs 42321 ssdifcl 43533 sssymdifcl 43534 supxrmnf2 45402 infxrpnf2 45432 fourierdlem102 46179 fourierdlem114 46191 lindslinindimp2lem4 48423 lindslinindsimp2lem5 48424 lindslinindsimp2 48425 lincresunit3 48443 |
| Copyright terms: Public domain | W3C validator |