| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version | ||
| Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4102 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
| 2 | sstr 3958 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3914 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 |
| This theorem is referenced by: ssdifssd 4113 xrsupss 13276 xrinfmss 13277 rpnnen2lem12 16200 lpval 23033 lpdifsn 23037 islp2 23039 lpcls 23258 mblfinlem3 37660 mblfinlem4 37661 voliunnfl 37665 redvmptabs 42355 ssdifcl 43567 sssymdifcl 43568 supxrmnf2 45436 infxrpnf2 45466 fourierdlem102 46213 fourierdlem114 46225 lindslinindimp2lem4 48454 lindslinindsimp2lem5 48455 lindslinindsimp2 48456 lincresunit3 48474 |
| Copyright terms: Public domain | W3C validator |