![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version |
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
Ref | Expression |
---|---|
ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4128 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
2 | sstr 3985 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
3 | 1, 2 | mpan 688 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3941 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-dif 3947 df-ss 3961 |
This theorem is referenced by: ssdifssd 4139 xrsupss 13328 xrinfmss 13329 rpnnen2lem12 16210 lpval 23092 lpdifsn 23096 islp2 23098 lpcls 23317 mblfinlem3 37265 mblfinlem4 37266 voliunnfl 37270 ssdifcl 43145 sssymdifcl 43146 supxrmnf2 44955 infxrpnf2 44985 fourierdlem102 45736 fourierdlem114 45748 lindslinindimp2lem4 47717 lindslinindsimp2lem5 47718 lindslinindsimp2 47719 lincresunit3 47737 |
Copyright terms: Public domain | W3C validator |