MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifss Structured version   Visualization version   GIF version

Theorem ssdifss 4087
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 4083 . 2 (𝐴𝐶) ⊆ 𝐴
2 sstr 3938 . 2 (((𝐴𝐶) ⊆ 𝐴𝐴𝐵) → (𝐴𝐶) ⊆ 𝐵)
31, 2mpan 690 1 (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3894  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-ss 3914
This theorem is referenced by:  ssdifssd  4094  xrsupss  13208  xrinfmss  13209  rpnnen2lem12  16134  lpval  23054  lpdifsn  23058  islp2  23060  lpcls  23279  mblfinlem3  37709  mblfinlem4  37710  voliunnfl  37714  redvmptabs  42463  ssdifcl  43674  sssymdifcl  43675  supxrmnf2  45541  infxrpnf2  45571  fourierdlem102  46316  fourierdlem114  46328  lindslinindimp2lem4  48572  lindslinindsimp2lem5  48573  lindslinindsimp2  48574  lincresunit3  48592
  Copyright terms: Public domain W3C validator