Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version |
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
Ref | Expression |
---|---|
ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4062 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
2 | sstr 3925 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3880 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssdifssd 4073 xrsupss 12972 xrinfmss 12973 rpnnen2lem12 15862 lpval 22198 lpdifsn 22202 islp2 22204 lpcls 22423 mblfinlem3 35743 mblfinlem4 35744 voliunnfl 35748 ssdifcl 41067 sssymdifcl 41068 supxrmnf2 42863 infxrpnf2 42893 fourierdlem102 43639 fourierdlem114 43651 lindslinindimp2lem4 45690 lindslinindsimp2lem5 45691 lindslinindsimp2 45692 lincresunit3 45710 |
Copyright terms: Public domain | W3C validator |