| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version | ||
| Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4099 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
| 2 | sstr 3955 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3911 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 |
| This theorem is referenced by: ssdifssd 4110 xrsupss 13269 xrinfmss 13270 rpnnen2lem12 16193 lpval 23026 lpdifsn 23030 islp2 23032 lpcls 23251 mblfinlem3 37653 mblfinlem4 37654 voliunnfl 37658 redvmptabs 42348 ssdifcl 43560 sssymdifcl 43561 supxrmnf2 45429 infxrpnf2 45459 fourierdlem102 46206 fourierdlem114 46218 lindslinindimp2lem4 48450 lindslinindsimp2lem5 48451 lindslinindsimp2 48452 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |