MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifss Structured version   Visualization version   GIF version

Theorem ssdifss 4163
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 4159 . 2 (𝐴𝐶) ⊆ 𝐴
2 sstr 4017 . 2 (((𝐴𝐶) ⊆ 𝐴𝐴𝐵) → (𝐴𝐶) ⊆ 𝐵)
31, 2mpan 689 1 (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3973  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993
This theorem is referenced by:  ssdifssd  4170  xrsupss  13371  xrinfmss  13372  rpnnen2lem12  16273  lpval  23168  lpdifsn  23172  islp2  23174  lpcls  23393  mblfinlem3  37619  mblfinlem4  37620  voliunnfl  37624  ssdifcl  43533  sssymdifcl  43534  supxrmnf2  45348  infxrpnf2  45378  fourierdlem102  46129  fourierdlem114  46141  lindslinindimp2lem4  48190  lindslinindsimp2lem5  48191  lindslinindsimp2  48192  lincresunit3  48210
  Copyright terms: Public domain W3C validator