MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifss Structured version   Visualization version   GIF version

Theorem ssdifss 4149
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 4145 . 2 (𝐴𝐶) ⊆ 𝐴
2 sstr 4003 . 2 (((𝐴𝐶) ⊆ 𝐴𝐴𝐵) → (𝐴𝐶) ⊆ 𝐵)
31, 2mpan 690 1 (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3959  wss 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-ss 3979
This theorem is referenced by:  ssdifssd  4156  xrsupss  13347  xrinfmss  13348  rpnnen2lem12  16257  lpval  23162  lpdifsn  23166  islp2  23168  lpcls  23387  mblfinlem3  37645  mblfinlem4  37646  voliunnfl  37650  redvmptabs  42368  ssdifcl  43560  sssymdifcl  43561  supxrmnf2  45382  infxrpnf2  45412  fourierdlem102  46163  fourierdlem114  46175  lindslinindimp2lem4  48306  lindslinindsimp2lem5  48307  lindslinindsimp2  48308  lincresunit3  48326
  Copyright terms: Public domain W3C validator