MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifss Structured version   Visualization version   GIF version

Theorem ssdifss 4132
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 4128 . 2 (𝐴𝐶) ⊆ 𝐴
2 sstr 3985 . 2 (((𝐴𝐶) ⊆ 𝐴𝐴𝐵) → (𝐴𝐶) ⊆ 𝐵)
31, 2mpan 688 1 (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3941  wss 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-ss 3961
This theorem is referenced by:  ssdifssd  4139  xrsupss  13328  xrinfmss  13329  rpnnen2lem12  16210  lpval  23092  lpdifsn  23096  islp2  23098  lpcls  23317  mblfinlem3  37265  mblfinlem4  37266  voliunnfl  37270  ssdifcl  43145  sssymdifcl  43146  supxrmnf2  44955  infxrpnf2  44985  fourierdlem102  45736  fourierdlem114  45748  lindslinindimp2lem4  47717  lindslinindsimp2lem5  47718  lindslinindsimp2  47719  lincresunit3  47737
  Copyright terms: Public domain W3C validator