MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifss Structured version   Visualization version   GIF version

Theorem ssdifss 4134
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 4130 . 2 (𝐴𝐶) ⊆ 𝐴
2 sstr 3989 . 2 (((𝐴𝐶) ⊆ 𝐴𝐴𝐵) → (𝐴𝐶) ⊆ 𝐵)
31, 2mpan 686 1 (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3944  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-dif 3950  df-in 3954  df-ss 3964
This theorem is referenced by:  ssdifssd  4141  xrsupss  13292  xrinfmss  13293  rpnnen2lem12  16172  lpval  22863  lpdifsn  22867  islp2  22869  lpcls  23088  mblfinlem3  36830  mblfinlem4  36831  voliunnfl  36835  ssdifcl  42624  sssymdifcl  42625  supxrmnf2  44441  infxrpnf2  44471  fourierdlem102  45222  fourierdlem114  45234  lindslinindimp2lem4  47229  lindslinindsimp2lem5  47230  lindslinindsimp2  47231  lincresunit3  47249
  Copyright terms: Public domain W3C validator