MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifss Structured version   Visualization version   GIF version

Theorem ssdifss 4103
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
Assertion
Ref Expression
ssdifss (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem ssdifss
StepHypRef Expression
1 difss 4099 . 2 (𝐴𝐶) ⊆ 𝐴
2 sstr 3955 . 2 (((𝐴𝐶) ⊆ 𝐴𝐴𝐵) → (𝐴𝐶) ⊆ 𝐵)
31, 2mpan 690 1 (𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3911  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931
This theorem is referenced by:  ssdifssd  4110  xrsupss  13269  xrinfmss  13270  rpnnen2lem12  16193  lpval  23026  lpdifsn  23030  islp2  23032  lpcls  23251  mblfinlem3  37653  mblfinlem4  37654  voliunnfl  37658  redvmptabs  42348  ssdifcl  43560  sssymdifcl  43561  supxrmnf2  45429  infxrpnf2  45459  fourierdlem102  46206  fourierdlem114  46218  lindslinindimp2lem4  48450  lindslinindsimp2lem5  48451  lindslinindsimp2  48452  lincresunit3  48470
  Copyright terms: Public domain W3C validator