| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopregbsn | Structured version Visualization version GIF version | ||
| Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30263 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
| frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
| frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrwopregbsn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
| 4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
| 5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | frgrwopreglem4 30259 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸) |
| 7 | ralcom 3257 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸) | |
| 8 | snidg 4612 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ {𝑋}) |
| 10 | eleq2 2817 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) |
| 12 | 9, 11 | mpbird 257 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ 𝐵) |
| 13 | preq2 4686 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋}) | |
| 14 | prcom 4684 | . . . . . . . . . 10 ⊢ {𝑤, 𝑋} = {𝑋, 𝑤} | |
| 15 | 13, 14 | eqtrdi 2780 | . . . . . . . . 9 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤}) |
| 16 | 15 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
| 17 | 16 | ralbidv 3152 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
| 18 | 17 | rspcv 3573 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
| 19 | 12, 18 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
| 20 | 3 | ssrab3 4033 | . . . . . . . 8 ⊢ 𝐴 ⊆ 𝑉 |
| 21 | ssdifim 4224 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | |
| 22 | 20, 4, 21 | mp2an 692 | . . . . . . 7 ⊢ 𝐴 = (𝑉 ∖ 𝐵) |
| 23 | difeq2 4071 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) |
| 25 | 22, 24 | eqtrid 2776 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋})) |
| 26 | 25 | raleqdv 3289 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 27 | 19, 26 | sylibd 239 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 28 | 7, 27 | biimtrid 242 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 29 | 6, 28 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 30 | 29 | 3impib 1116 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ‘cfv 6482 Vtxcvtx 28941 Edgcedg 28992 VtxDegcvtxdg 29411 FriendGraph cfrgr 30202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-xadd 13015 df-fz 13411 df-hash 14238 df-edg 28993 df-uhgr 29003 df-ushgr 29004 df-upgr 29027 df-umgr 29028 df-uspgr 29095 df-usgr 29096 df-nbgr 29278 df-vtxdg 29412 df-frgr 30203 |
| This theorem is referenced by: frgrwopreg2 30263 |
| Copyright terms: Public domain | W3C validator |