MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregbsn Structured version   Visualization version   GIF version

Theorem frgrwopregbsn 28010
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 28012 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregbsn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregbsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 28008 . . 3 (𝐺 ∈ FriendGraph → ∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸)
7 ralcom 3359 . . . 4 (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸)
8 snidg 4596 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
98adantr 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋 ∈ {𝑋})
10 eleq2 2906 . . . . . . . 8 (𝐵 = {𝑋} → (𝑋𝐵𝑋 ∈ {𝑋}))
1110adantl 482 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑋𝐵𝑋 ∈ {𝑋}))
129, 11mpbird 258 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋𝐵)
13 preq2 4669 . . . . . . . . . 10 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋})
14 prcom 4667 . . . . . . . . . 10 {𝑤, 𝑋} = {𝑋, 𝑤}
1513, 14syl6eq 2877 . . . . . . . . 9 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤})
1615eleq1d 2902 . . . . . . . 8 (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1716ralbidv 3202 . . . . . . 7 (𝑣 = 𝑋 → (∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1817rspcv 3622 . . . . . 6 (𝑋𝐵 → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1912, 18syl 17 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
203ssrab3 4061 . . . . . . . 8 𝐴𝑉
21 ssdifim 4243 . . . . . . . 8 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
2220, 4, 21mp2an 688 . . . . . . 7 𝐴 = (𝑉𝐵)
23 difeq2 4097 . . . . . . . 8 (𝐵 = {𝑋} → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2423adantl 482 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2522, 24syl5eq 2873 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋}))
2625raleqdv 3421 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2719, 26sylibd 240 . . . 4 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
287, 27syl5bi 243 . . 3 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
296, 28syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
30293impib 1110 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  {crab 3147  cdif 3937  wss 3940  {csn 4564  {cpr 4566  cfv 6352  Vtxcvtx 26695  Edgcedg 26746  VtxDegcvtxdg 27161   FriendGraph cfrgr 27951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-xadd 12498  df-fz 12883  df-hash 13681  df-edg 26747  df-uhgr 26757  df-ushgr 26758  df-upgr 26781  df-umgr 26782  df-uspgr 26849  df-usgr 26850  df-nbgr 27029  df-vtxdg 27162  df-frgr 27952
This theorem is referenced by:  frgrwopreg2  28012
  Copyright terms: Public domain W3C validator