MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregbsn Structured version   Visualization version   GIF version

Theorem frgrwopregbsn 28582
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 28584 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregbsn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregbsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 28580 . . 3 (𝐺 ∈ FriendGraph → ∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸)
7 ralcom 3280 . . . 4 (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸)
8 snidg 4592 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
98adantr 480 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋 ∈ {𝑋})
10 eleq2 2827 . . . . . . . 8 (𝐵 = {𝑋} → (𝑋𝐵𝑋 ∈ {𝑋}))
1110adantl 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑋𝐵𝑋 ∈ {𝑋}))
129, 11mpbird 256 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋𝐵)
13 preq2 4667 . . . . . . . . . 10 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋})
14 prcom 4665 . . . . . . . . . 10 {𝑤, 𝑋} = {𝑋, 𝑤}
1513, 14eqtrdi 2795 . . . . . . . . 9 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤})
1615eleq1d 2823 . . . . . . . 8 (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1716ralbidv 3120 . . . . . . 7 (𝑣 = 𝑋 → (∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1817rspcv 3547 . . . . . 6 (𝑋𝐵 → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1912, 18syl 17 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
203ssrab3 4011 . . . . . . . 8 𝐴𝑉
21 ssdifim 4193 . . . . . . . 8 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
2220, 4, 21mp2an 688 . . . . . . 7 𝐴 = (𝑉𝐵)
23 difeq2 4047 . . . . . . . 8 (𝐵 = {𝑋} → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2423adantl 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2522, 24syl5eq 2791 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋}))
2625raleqdv 3339 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2719, 26sylibd 238 . . . 4 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
287, 27syl5bi 241 . . 3 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
296, 28syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
30293impib 1114 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  wss 3883  {csn 4558  {cpr 4560  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  VtxDegcvtxdg 27735   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-hash 13973  df-edg 27321  df-uhgr 27331  df-ushgr 27332  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-nbgr 27603  df-vtxdg 27736  df-frgr 28524
This theorem is referenced by:  frgrwopreg2  28584
  Copyright terms: Public domain W3C validator