Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopregbsn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 28683 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopregbsn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 28679 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸) |
7 | ralcom 3166 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸) | |
8 | snidg 4595 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
9 | 8 | adantr 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ {𝑋}) |
10 | eleq2 2827 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) | |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) |
12 | 9, 11 | mpbird 256 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ 𝐵) |
13 | preq2 4670 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋}) | |
14 | prcom 4668 | . . . . . . . . . 10 ⊢ {𝑤, 𝑋} = {𝑋, 𝑤} | |
15 | 13, 14 | eqtrdi 2794 | . . . . . . . . 9 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤}) |
16 | 15 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
17 | 16 | ralbidv 3112 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
18 | 17 | rspcv 3557 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
19 | 12, 18 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
20 | 3 | ssrab3 4015 | . . . . . . . 8 ⊢ 𝐴 ⊆ 𝑉 |
21 | ssdifim 4196 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | |
22 | 20, 4, 21 | mp2an 689 | . . . . . . 7 ⊢ 𝐴 = (𝑉 ∖ 𝐵) |
23 | difeq2 4051 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) | |
24 | 23 | adantl 482 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) |
25 | 22, 24 | eqtrid 2790 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋})) |
26 | 25 | raleqdv 3348 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
27 | 19, 26 | sylibd 238 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
28 | 7, 27 | syl5bi 241 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
29 | 6, 28 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
30 | 29 | 3impib 1115 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 {cpr 4563 ‘cfv 6433 Vtxcvtx 27366 Edgcedg 27417 VtxDegcvtxdg 27832 FriendGraph cfrgr 28622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-xadd 12849 df-fz 13240 df-hash 14045 df-edg 27418 df-uhgr 27428 df-ushgr 27429 df-upgr 27452 df-umgr 27453 df-uspgr 27520 df-usgr 27521 df-nbgr 27700 df-vtxdg 27833 df-frgr 28623 |
This theorem is referenced by: frgrwopreg2 28683 |
Copyright terms: Public domain | W3C validator |