MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregbsn Structured version   Visualization version   GIF version

Theorem frgrwopregbsn 28256
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 28258 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregbsn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregbsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 28254 . . 3 (𝐺 ∈ FriendGraph → ∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸)
7 ralcom 3258 . . . 4 (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸)
8 snidg 4550 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
98adantr 484 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋 ∈ {𝑋})
10 eleq2 2821 . . . . . . . 8 (𝐵 = {𝑋} → (𝑋𝐵𝑋 ∈ {𝑋}))
1110adantl 485 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑋𝐵𝑋 ∈ {𝑋}))
129, 11mpbird 260 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋𝐵)
13 preq2 4625 . . . . . . . . . 10 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋})
14 prcom 4623 . . . . . . . . . 10 {𝑤, 𝑋} = {𝑋, 𝑤}
1513, 14eqtrdi 2789 . . . . . . . . 9 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤})
1615eleq1d 2817 . . . . . . . 8 (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1716ralbidv 3109 . . . . . . 7 (𝑣 = 𝑋 → (∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1817rspcv 3521 . . . . . 6 (𝑋𝐵 → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1912, 18syl 17 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
203ssrab3 3971 . . . . . . . 8 𝐴𝑉
21 ssdifim 4153 . . . . . . . 8 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
2220, 4, 21mp2an 692 . . . . . . 7 𝐴 = (𝑉𝐵)
23 difeq2 4007 . . . . . . . 8 (𝐵 = {𝑋} → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2423adantl 485 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2522, 24syl5eq 2785 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋}))
2625raleqdv 3316 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2719, 26sylibd 242 . . . 4 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
287, 27syl5bi 245 . . 3 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
296, 28syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
30293impib 1117 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  {crab 3057  cdif 3840  wss 3843  {csn 4516  {cpr 4518  cfv 6339  Vtxcvtx 26943  Edgcedg 26994  VtxDegcvtxdg 27409   FriendGraph cfrgr 28197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-2o 8134  df-oadd 8137  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-dju 9405  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-2 11781  df-n0 11979  df-xnn0 12051  df-z 12065  df-uz 12327  df-xadd 12593  df-fz 12984  df-hash 13785  df-edg 26995  df-uhgr 27005  df-ushgr 27006  df-upgr 27029  df-umgr 27030  df-uspgr 27097  df-usgr 27098  df-nbgr 27277  df-vtxdg 27410  df-frgr 28198
This theorem is referenced by:  frgrwopreg2  28258
  Copyright terms: Public domain W3C validator