MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregbsn Structured version   Visualization version   GIF version

Theorem frgrwopregbsn 30296
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30298 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregbsn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregbsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 30294 . . 3 (𝐺 ∈ FriendGraph → ∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸)
7 ralcom 3263 . . . 4 (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸)
8 snidg 4620 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
98adantr 480 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋 ∈ {𝑋})
10 eleq2 2817 . . . . . . . 8 (𝐵 = {𝑋} → (𝑋𝐵𝑋 ∈ {𝑋}))
1110adantl 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑋𝐵𝑋 ∈ {𝑋}))
129, 11mpbird 257 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋𝐵)
13 preq2 4694 . . . . . . . . . 10 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋})
14 prcom 4692 . . . . . . . . . 10 {𝑤, 𝑋} = {𝑋, 𝑤}
1513, 14eqtrdi 2780 . . . . . . . . 9 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤})
1615eleq1d 2813 . . . . . . . 8 (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1716ralbidv 3156 . . . . . . 7 (𝑣 = 𝑋 → (∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1817rspcv 3581 . . . . . 6 (𝑋𝐵 → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1912, 18syl 17 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
203ssrab3 4041 . . . . . . . 8 𝐴𝑉
21 ssdifim 4232 . . . . . . . 8 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
2220, 4, 21mp2an 692 . . . . . . 7 𝐴 = (𝑉𝐵)
23 difeq2 4079 . . . . . . . 8 (𝐵 = {𝑋} → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2423adantl 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2522, 24eqtrid 2776 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋}))
2625raleqdv 3296 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2719, 26sylibd 239 . . . 4 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
287, 27biimtrid 242 . . 3 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
296, 28syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
30293impib 1116 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cdif 3908  wss 3911  {csn 4585  {cpr 4587  cfv 6499  Vtxcvtx 28976  Edgcedg 29027  VtxDegcvtxdg 29446   FriendGraph cfrgr 30237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-xadd 13049  df-fz 13445  df-hash 14272  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-nbgr 29313  df-vtxdg 29447  df-frgr 30238
This theorem is referenced by:  frgrwopreg2  30298
  Copyright terms: Public domain W3C validator