![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopregbsn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30103 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopregbsn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 30099 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸) |
7 | ralcom 3281 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸) | |
8 | snidg 4658 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ {𝑋}) |
10 | eleq2 2817 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) | |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) |
12 | 9, 11 | mpbird 257 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ 𝐵) |
13 | preq2 4734 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋}) | |
14 | prcom 4732 | . . . . . . . . . 10 ⊢ {𝑤, 𝑋} = {𝑋, 𝑤} | |
15 | 13, 14 | eqtrdi 2783 | . . . . . . . . 9 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤}) |
16 | 15 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
17 | 16 | ralbidv 3172 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
18 | 17 | rspcv 3603 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
19 | 12, 18 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
20 | 3 | ssrab3 4076 | . . . . . . . 8 ⊢ 𝐴 ⊆ 𝑉 |
21 | ssdifim 4258 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | |
22 | 20, 4, 21 | mp2an 691 | . . . . . . 7 ⊢ 𝐴 = (𝑉 ∖ 𝐵) |
23 | difeq2 4112 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) | |
24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) |
25 | 22, 24 | eqtrid 2779 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋})) |
26 | 25 | raleqdv 3320 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
27 | 19, 26 | sylibd 238 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
28 | 7, 27 | biimtrid 241 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
29 | 6, 28 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
30 | 29 | 3impib 1114 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 ∖ cdif 3941 ⊆ wss 3944 {csn 4624 {cpr 4626 ‘cfv 6542 Vtxcvtx 28783 Edgcedg 28834 VtxDegcvtxdg 29253 FriendGraph cfrgr 30042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-xadd 13111 df-fz 13503 df-hash 14308 df-edg 28835 df-uhgr 28845 df-ushgr 28846 df-upgr 28869 df-umgr 28870 df-uspgr 28937 df-usgr 28938 df-nbgr 29120 df-vtxdg 29254 df-frgr 30043 |
This theorem is referenced by: frgrwopreg2 30103 |
Copyright terms: Public domain | W3C validator |