MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregbsn Structured version   Visualization version   GIF version

Theorem frgrwopregbsn 30297
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30299 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregbsn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregbsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 30295 . . 3 (𝐺 ∈ FriendGraph → ∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸)
7 ralcom 3260 . . . 4 (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸)
8 snidg 4610 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
98adantr 480 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋 ∈ {𝑋})
10 eleq2 2820 . . . . . . . 8 (𝐵 = {𝑋} → (𝑋𝐵𝑋 ∈ {𝑋}))
1110adantl 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑋𝐵𝑋 ∈ {𝑋}))
129, 11mpbird 257 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝑋𝐵)
13 preq2 4684 . . . . . . . . . 10 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋})
14 prcom 4682 . . . . . . . . . 10 {𝑤, 𝑋} = {𝑋, 𝑤}
1513, 14eqtrdi 2782 . . . . . . . . 9 (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤})
1615eleq1d 2816 . . . . . . . 8 (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1716ralbidv 3155 . . . . . . 7 (𝑣 = 𝑋 → (∀𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1817rspcv 3568 . . . . . 6 (𝑋𝐵 → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
1912, 18syl 17 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸))
203ssrab3 4029 . . . . . . . 8 𝐴𝑉
21 ssdifim 4220 . . . . . . . 8 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
2220, 4, 21mp2an 692 . . . . . . 7 𝐴 = (𝑉𝐵)
23 difeq2 4067 . . . . . . . 8 (𝐵 = {𝑋} → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2423adantl 481 . . . . . . 7 ((𝑋𝑉𝐵 = {𝑋}) → (𝑉𝐵) = (𝑉 ∖ {𝑋}))
2522, 24eqtrid 2778 . . . . . 6 ((𝑋𝑉𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋}))
2625raleqdv 3292 . . . . 5 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2719, 26sylibd 239 . . . 4 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑣𝐵𝑤𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
287, 27biimtrid 242 . . 3 ((𝑋𝑉𝐵 = {𝑋}) → (∀𝑤𝐴𝑣𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
296, 28syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
30293impib 1116 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3894  wss 3897  {csn 4573  {cpr 4575  cfv 6481  Vtxcvtx 28974  Edgcedg 29025  VtxDegcvtxdg 29444   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-xadd 13012  df-fz 13408  df-hash 14238  df-edg 29026  df-uhgr 29036  df-ushgr 29037  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-nbgr 29311  df-vtxdg 29445  df-frgr 30239
This theorem is referenced by:  frgrwopreg2  30299
  Copyright terms: Public domain W3C validator