| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopregbsn | Structured version Visualization version GIF version | ||
| Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30248 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
| frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
| frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrwopregbsn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
| 4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
| 5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | frgrwopreglem4 30244 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸) |
| 7 | ralcom 3265 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸) | |
| 8 | snidg 4624 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ {𝑋}) |
| 10 | eleq2 2817 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) | |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑋})) |
| 12 | 9, 11 | mpbird 257 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝑋 ∈ 𝐵) |
| 13 | preq2 4698 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑤, 𝑋}) | |
| 14 | prcom 4696 | . . . . . . . . . 10 ⊢ {𝑤, 𝑋} = {𝑋, 𝑤} | |
| 15 | 13, 14 | eqtrdi 2780 | . . . . . . . . 9 ⊢ (𝑣 = 𝑋 → {𝑤, 𝑣} = {𝑋, 𝑤}) |
| 16 | 15 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → ({𝑤, 𝑣} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
| 17 | 16 | ralbidv 3156 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
| 18 | 17 | rspcv 3584 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
| 19 | 12, 18 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸)) |
| 20 | 3 | ssrab3 4045 | . . . . . . . 8 ⊢ 𝐴 ⊆ 𝑉 |
| 21 | ssdifim 4236 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | |
| 22 | 20, 4, 21 | mp2an 692 | . . . . . . 7 ⊢ 𝐴 = (𝑉 ∖ 𝐵) |
| 23 | difeq2 4083 | . . . . . . . 8 ⊢ (𝐵 = {𝑋} → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (𝑉 ∖ 𝐵) = (𝑉 ∖ {𝑋})) |
| 25 | 22, 24 | eqtrid 2776 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → 𝐴 = (𝑉 ∖ {𝑋})) |
| 26 | 25 | raleqdv 3299 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 27 | 19, 26 | sylibd 239 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 28 | 7, 27 | biimtrid 242 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → (∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 {𝑤, 𝑣} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 29 | 6, 28 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
| 30 | 29 | 3impib 1116 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 {cpr 4591 ‘cfv 6511 Vtxcvtx 28923 Edgcedg 28974 VtxDegcvtxdg 29393 FriendGraph cfrgr 30187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-xadd 13073 df-fz 13469 df-hash 14296 df-edg 28975 df-uhgr 28985 df-ushgr 28986 df-upgr 29009 df-umgr 29010 df-uspgr 29077 df-usgr 29078 df-nbgr 29260 df-vtxdg 29394 df-frgr 30188 |
| This theorem is referenced by: frgrwopreg2 30248 |
| Copyright terms: Public domain | W3C validator |