| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3985 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4377 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-dif 3929 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: ssn0 4379 ssdifin0 4461 disjxiun 5116 f1un 6838 fsetexb 8878 undomOLD 9074 infn0 9312 fieq0 9433 infdifsn 9671 cantnff 9688 tc00 9762 hashun3 14402 strleun 17176 dmdprdsplit2lem 20028 2idlval 21212 ocvval 21627 pjfval 21666 opsrle 22005 pf1rcl 22287 en2top 22923 nrmsep 23295 isnrm3 23297 regsep2 23314 xkohaus 23591 kqdisj 23670 regr1lem 23677 alexsublem 23982 reconnlem1 24766 metdstri 24791 iundisj2 25502 left0s 27856 right0s 27857 0clwlk0 30113 disjxpin 32569 iundisj2f 32571 iundisj2fi 32774 1arithufdlem4 33562 cvmsss2 35296 cldbnd 36344 cntotbnd 37820 nna4b4nsq 42683 mapfzcons1 42740 onfrALTlem2 44571 onfrALTlem2VD 44913 nnuzdisj 45382 ssdisjd 48786 ssdisjdr 48787 sepnsepolem2 48897 sepnsepo 48898 resccat 49041 |
| Copyright terms: Public domain | W3C validator |