Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3947 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4332 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 408 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: ssn0 4334 ssdifin0 4416 disjxiun 5071 f1un 6736 fsetexb 8652 undomOLD 8847 fieq0 9180 infdifsn 9415 cantnff 9432 tc00 9506 hashun3 14099 strleun 16858 dmdprdsplit2lem 19648 2idlval 20504 ocvval 20872 pjfval 20913 opsrle 21248 pf1rcl 21515 en2top 22135 nrmsep 22508 isnrm3 22510 regsep2 22527 xkohaus 22804 kqdisj 22883 regr1lem 22890 alexsublem 23195 reconnlem1 23989 metdstri 24014 iundisj2 24713 0clwlk0 28496 disjxpin 30927 iundisj2f 30929 iundisj2fi 31118 cvmsss2 33236 left0s 34075 right0s 34076 cldbnd 34515 cntotbnd 35954 nna4b4nsq 40497 mapfzcons1 40539 onfrALTlem2 42166 onfrALTlem2VD 42509 nnuzdisj 42894 ssdisjd 46153 ssdisjdr 46154 sepnsepolem2 46216 sepnsepo 46217 |
Copyright terms: Public domain | W3C validator |