Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3957 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4344 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 408 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ⊆ wss 3897 ∅c0 4268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4269 |
This theorem is referenced by: ssn0 4346 ssdifin0 4429 disjxiun 5086 f1un 6781 fsetexb 8715 undomOLD 8917 infn0 9164 fieq0 9270 infdifsn 9506 cantnff 9523 tc00 9597 hashun3 14191 strleun 16947 dmdprdsplit2lem 19735 2idlval 20602 ocvval 20970 pjfval 21011 opsrle 21346 pf1rcl 21613 en2top 22233 nrmsep 22606 isnrm3 22608 regsep2 22625 xkohaus 22902 kqdisj 22981 regr1lem 22988 alexsublem 23293 reconnlem1 24087 metdstri 24112 iundisj2 24811 0clwlk0 28725 disjxpin 31155 iundisj2f 31157 iundisj2fi 31346 cvmsss2 33476 left0s 34166 right0s 34167 cldbnd 34606 cntotbnd 36052 nna4b4nsq 40747 mapfzcons1 40789 onfrALTlem2 42476 onfrALTlem2VD 42819 nnuzdisj 43218 ssdisjd 46493 ssdisjdr 46494 sepnsepolem2 46556 sepnsepo 46557 |
Copyright terms: Public domain | W3C validator |