![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4035 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4425 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: ssn0 4427 ssdifin0 4509 disjxiun 5163 f1un 6882 fsetexb 8922 undomOLD 9126 infn0 9368 fieq0 9490 infdifsn 9726 cantnff 9743 tc00 9817 hashun3 14433 strleun 17204 dmdprdsplit2lem 20089 2idlval 21284 ocvval 21708 pjfval 21749 opsrle 22088 pf1rcl 22374 en2top 23013 nrmsep 23386 isnrm3 23388 regsep2 23405 xkohaus 23682 kqdisj 23761 regr1lem 23768 alexsublem 24073 reconnlem1 24867 metdstri 24892 iundisj2 25603 left0s 27949 right0s 27950 0clwlk0 30164 disjxpin 32610 iundisj2f 32612 iundisj2fi 32802 1arithufdlem4 33540 cvmsss2 35242 cldbnd 36292 cntotbnd 37756 nna4b4nsq 42615 mapfzcons1 42673 onfrALTlem2 44517 onfrALTlem2VD 44860 nnuzdisj 45270 ssdisjd 48539 ssdisjdr 48540 sepnsepolem2 48602 sepnsepo 48603 |
Copyright terms: Public domain | W3C validator |