![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4009 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4399 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | syl6bi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 409 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 |
This theorem is referenced by: ssn0 4401 ssdifin0 4486 disjxiun 5146 f1un 6854 fsetexb 8858 undomOLD 9060 infn0 9307 fieq0 9416 infdifsn 9652 cantnff 9669 tc00 9743 hashun3 14344 strleun 17090 dmdprdsplit2lem 19915 2idlval 20858 ocvval 21220 pjfval 21261 opsrle 21602 pf1rcl 21868 en2top 22488 nrmsep 22861 isnrm3 22863 regsep2 22880 xkohaus 23157 kqdisj 23236 regr1lem 23243 alexsublem 23548 reconnlem1 24342 metdstri 24367 iundisj2 25066 left0s 27387 right0s 27388 0clwlk0 29385 disjxpin 31819 iundisj2f 31821 iundisj2fi 32008 cvmsss2 34265 cldbnd 35211 cntotbnd 36664 nna4b4nsq 41402 mapfzcons1 41455 onfrALTlem2 43307 onfrALTlem2VD 43650 nnuzdisj 44065 ssdisjd 47492 ssdisjdr 47493 sepnsepolem2 47555 sepnsepo 47556 |
Copyright terms: Public domain | W3C validator |