| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3958 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4353 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3899 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3902 df-ss 3916 df-nul 4285 |
| This theorem is referenced by: ssn0 4355 ssdifin0 4437 disjxiun 5092 f1un 6791 fsetexb 8797 infn0 9196 fieq0 9315 infdifsn 9557 cantnff 9574 tc00 9646 hashun3 14301 strleun 17078 dmdprdsplit2lem 19969 2idlval 21198 ocvval 21614 pjfval 21653 opsrle 21992 pf1rcl 22274 en2top 22910 nrmsep 23282 isnrm3 23284 regsep2 23301 xkohaus 23578 kqdisj 23657 regr1lem 23664 alexsublem 23969 reconnlem1 24752 metdstri 24777 iundisj2 25487 left0s 27848 right0s 27849 0clwlk0 30123 disjxpin 32579 iundisj2f 32581 iundisj2fi 32790 1arithufdlem4 33523 cvmsss2 35329 cldbnd 36381 cntotbnd 37846 nna4b4nsq 42768 mapfzcons1 42824 onfrALTlem2 44653 onfrALTlem2VD 44995 nnuzdisj 45468 ssdisjd 48922 ssdisjdr 48923 sepnsepolem2 49037 sepnsepo 49038 resccat 49189 |
| Copyright terms: Public domain | W3C validator |