| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 4010 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4402 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3951 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-dif 3954 df-ss 3968 df-nul 4334 |
| This theorem is referenced by: ssn0 4404 ssdifin0 4486 disjxiun 5140 f1un 6868 fsetexb 8904 undomOLD 9100 infn0 9340 fieq0 9461 infdifsn 9697 cantnff 9714 tc00 9788 hashun3 14423 strleun 17194 dmdprdsplit2lem 20065 2idlval 21261 ocvval 21685 pjfval 21726 opsrle 22065 pf1rcl 22353 en2top 22992 nrmsep 23365 isnrm3 23367 regsep2 23384 xkohaus 23661 kqdisj 23740 regr1lem 23747 alexsublem 24052 reconnlem1 24848 metdstri 24873 iundisj2 25584 left0s 27931 right0s 27932 0clwlk0 30151 disjxpin 32601 iundisj2f 32603 iundisj2fi 32799 1arithufdlem4 33575 cvmsss2 35279 cldbnd 36327 cntotbnd 37803 nna4b4nsq 42670 mapfzcons1 42728 onfrALTlem2 44566 onfrALTlem2VD 44909 nnuzdisj 45366 ssdisjd 48727 ssdisjdr 48728 sepnsepolem2 48820 sepnsepo 48821 |
| Copyright terms: Public domain | W3C validator |