MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq0 Structured version   Visualization version   GIF version

Theorem sseq0 4333
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
sseq0 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)

Proof of Theorem sseq0
StepHypRef Expression
1 sseq2 3947 . . 3 (𝐵 = ∅ → (𝐴𝐵𝐴 ⊆ ∅))
2 ss0 4332 . . 3 (𝐴 ⊆ ∅ → 𝐴 = ∅)
31, 2syl6bi 252 . 2 (𝐵 = ∅ → (𝐴𝐵𝐴 = ∅))
43impcom 408 1 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wss 3887  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  ssn0  4334  ssdifin0  4416  disjxiun  5071  f1un  6736  fsetexb  8652  undomOLD  8847  fieq0  9180  infdifsn  9415  cantnff  9432  tc00  9506  hashun3  14099  strleun  16858  dmdprdsplit2lem  19648  2idlval  20504  ocvval  20872  pjfval  20913  opsrle  21248  pf1rcl  21515  en2top  22135  nrmsep  22508  isnrm3  22510  regsep2  22527  xkohaus  22804  kqdisj  22883  regr1lem  22890  alexsublem  23195  reconnlem1  23989  metdstri  24014  iundisj2  24713  0clwlk0  28496  disjxpin  30927  iundisj2f  30929  iundisj2fi  31118  cvmsss2  33236  left0s  34075  right0s  34076  cldbnd  34515  cntotbnd  35954  nna4b4nsq  40497  mapfzcons1  40539  onfrALTlem2  42166  onfrALTlem2VD  42509  nnuzdisj  42894  ssdisjd  46153  ssdisjdr  46154  sepnsepolem2  46216  sepnsepo  46217
  Copyright terms: Public domain W3C validator