| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3976 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4368 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: ssn0 4370 ssdifin0 4452 disjxiun 5107 f1un 6823 fsetexb 8840 undomOLD 9034 infn0 9258 fieq0 9379 infdifsn 9617 cantnff 9634 tc00 9708 hashun3 14356 strleun 17134 dmdprdsplit2lem 19984 2idlval 21168 ocvval 21583 pjfval 21622 opsrle 21961 pf1rcl 22243 en2top 22879 nrmsep 23251 isnrm3 23253 regsep2 23270 xkohaus 23547 kqdisj 23626 regr1lem 23633 alexsublem 23938 reconnlem1 24722 metdstri 24747 iundisj2 25457 left0s 27811 right0s 27812 0clwlk0 30068 disjxpin 32524 iundisj2f 32526 iundisj2fi 32727 1arithufdlem4 33525 cvmsss2 35268 cldbnd 36321 cntotbnd 37797 nna4b4nsq 42655 mapfzcons1 42712 onfrALTlem2 44543 onfrALTlem2VD 44885 nnuzdisj 45358 ssdisjd 48800 ssdisjdr 48801 sepnsepolem2 48915 sepnsepo 48916 resccat 49067 |
| Copyright terms: Public domain | W3C validator |