| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3959 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4350 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3900 ∅c0 4281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3903 df-ss 3917 df-nul 4282 |
| This theorem is referenced by: ssn0 4352 ssdifin0 4434 disjxiun 5086 f1un 6779 fsetexb 8783 infn0 9181 fieq0 9300 infdifsn 9542 cantnff 9559 tc00 9633 hashun3 14283 strleun 17060 dmdprdsplit2lem 19952 2idlval 21181 ocvval 21597 pjfval 21636 opsrle 21975 pf1rcl 22257 en2top 22893 nrmsep 23265 isnrm3 23267 regsep2 23284 xkohaus 23561 kqdisj 23640 regr1lem 23647 alexsublem 23952 reconnlem1 24735 metdstri 24760 iundisj2 25470 left0s 27831 right0s 27832 0clwlk0 30102 disjxpin 32558 iundisj2f 32560 iundisj2fi 32769 1arithufdlem4 33502 cvmsss2 35286 cldbnd 36339 cntotbnd 37815 nna4b4nsq 42672 mapfzcons1 42729 onfrALTlem2 44558 onfrALTlem2VD 44900 nnuzdisj 45373 ssdisjd 48818 ssdisjdr 48819 sepnsepolem2 48933 sepnsepo 48934 resccat 49085 |
| Copyright terms: Public domain | W3C validator |