| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3964 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4355 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3905 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3908 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: ssn0 4357 ssdifin0 4439 disjxiun 5092 f1un 6788 fsetexb 8798 infn0 9209 fieq0 9330 infdifsn 9572 cantnff 9589 tc00 9663 hashun3 14309 strleun 17086 dmdprdsplit2lem 19944 2idlval 21176 ocvval 21592 pjfval 21631 opsrle 21970 pf1rcl 22252 en2top 22888 nrmsep 23260 isnrm3 23262 regsep2 23279 xkohaus 23556 kqdisj 23635 regr1lem 23642 alexsublem 23947 reconnlem1 24731 metdstri 24756 iundisj2 25466 left0s 27825 right0s 27826 0clwlk0 30094 disjxpin 32550 iundisj2f 32552 iundisj2fi 32753 1arithufdlem4 33494 cvmsss2 35246 cldbnd 36299 cntotbnd 37775 nna4b4nsq 42633 mapfzcons1 42690 onfrALTlem2 44520 onfrALTlem2VD 44862 nnuzdisj 45335 ssdisjd 48780 ssdisjdr 48781 sepnsepolem2 48895 sepnsepo 48896 resccat 49047 |
| Copyright terms: Public domain | W3C validator |