Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3943 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4329 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: ssn0 4331 ssdifin0 4413 disjxiun 5067 fsetexb 8610 undom 8800 fieq0 9110 infdifsn 9345 cantnff 9362 tc00 9437 hashun3 14027 strleun 16786 dmdprdsplit2lem 19563 2idlval 20417 ocvval 20784 pjfval 20823 opsrle 21158 pf1rcl 21425 en2top 22043 nrmsep 22416 isnrm3 22418 regsep2 22435 xkohaus 22712 kqdisj 22791 regr1lem 22798 alexsublem 23103 reconnlem1 23895 metdstri 23920 iundisj2 24618 0clwlk0 28397 disjxpin 30828 iundisj2f 30830 iundisj2fi 31020 cvmsss2 33136 left0s 34002 right0s 34003 cldbnd 34442 cntotbnd 35881 nna4b4nsq 40413 mapfzcons1 40455 onfrALTlem2 42055 onfrALTlem2VD 42398 nnuzdisj 42784 ssdisjd 46041 ssdisjdr 46042 sepnsepolem2 46104 sepnsepo 46105 |
Copyright terms: Public domain | W3C validator |