| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version | ||
| Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3973 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
| 2 | ss0 4365 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
| 4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: ssn0 4367 ssdifin0 4449 disjxiun 5104 f1un 6820 fsetexb 8837 infn0 9251 fieq0 9372 infdifsn 9610 cantnff 9627 tc00 9701 hashun3 14349 strleun 17127 dmdprdsplit2lem 19977 2idlval 21161 ocvval 21576 pjfval 21615 opsrle 21954 pf1rcl 22236 en2top 22872 nrmsep 23244 isnrm3 23246 regsep2 23263 xkohaus 23540 kqdisj 23619 regr1lem 23626 alexsublem 23931 reconnlem1 24715 metdstri 24740 iundisj2 25450 left0s 27804 right0s 27805 0clwlk0 30061 disjxpin 32517 iundisj2f 32519 iundisj2fi 32720 1arithufdlem4 33518 cvmsss2 35261 cldbnd 36314 cntotbnd 37790 nna4b4nsq 42648 mapfzcons1 42705 onfrALTlem2 44536 onfrALTlem2VD 44878 nnuzdisj 45351 ssdisjd 48796 ssdisjdr 48797 sepnsepolem2 48911 sepnsepo 48912 resccat 49063 |
| Copyright terms: Public domain | W3C validator |