![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4022 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4408 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-dif 3966 df-ss 3980 df-nul 4340 |
This theorem is referenced by: ssn0 4410 ssdifin0 4492 disjxiun 5145 f1un 6869 fsetexb 8903 undomOLD 9099 infn0 9338 fieq0 9459 infdifsn 9695 cantnff 9712 tc00 9786 hashun3 14420 strleun 17191 dmdprdsplit2lem 20080 2idlval 21279 ocvval 21703 pjfval 21744 opsrle 22083 pf1rcl 22369 en2top 23008 nrmsep 23381 isnrm3 23383 regsep2 23400 xkohaus 23677 kqdisj 23756 regr1lem 23763 alexsublem 24068 reconnlem1 24862 metdstri 24887 iundisj2 25598 left0s 27946 right0s 27947 0clwlk0 30161 disjxpin 32608 iundisj2f 32610 iundisj2fi 32805 1arithufdlem4 33555 cvmsss2 35259 cldbnd 36309 cntotbnd 37783 nna4b4nsq 42647 mapfzcons1 42705 onfrALTlem2 44544 onfrALTlem2VD 44887 nnuzdisj 45305 ssdisjd 48656 ssdisjdr 48657 sepnsepolem2 48719 sepnsepo 48720 |
Copyright terms: Public domain | W3C validator |