Proof of Theorem seposep
Step | Hyp | Ref
| Expression |
1 | | sepdisj.1 |
. 2
⊢ (𝜑 → 𝐽 ∈ Top) |
2 | | seposep.2 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
3 | | simp31 1207 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑆 ⊆ 𝑛) |
4 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝐽 ∈ Top) |
5 | | simp2l 1197 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑛 ∈ 𝐽) |
6 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
7 | 6 | eltopss 21964 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ 𝐽) → 𝑛 ⊆ ∪ 𝐽) |
8 | 4, 5, 7 | syl2anc 583 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑛 ⊆ ∪ 𝐽) |
9 | 3, 8 | sstrd 3927 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑆 ⊆ ∪ 𝐽) |
10 | | simp32 1208 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑇 ⊆ 𝑚) |
11 | | simp2r 1198 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑚 ∈ 𝐽) |
12 | 6 | eltopss 21964 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽) → 𝑚 ⊆ ∪ 𝐽) |
13 | 4, 11, 12 | syl2anc 583 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑚 ⊆ ∪ 𝐽) |
14 | 10, 13 | sstrd 3927 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑇 ⊆ ∪ 𝐽) |
15 | 6 | opncld 22092 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑛) ∈ (Clsd‘𝐽)) |
16 | 4, 5, 15 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (∪ 𝐽
∖ 𝑛) ∈
(Clsd‘𝐽)) |
17 | | incom 4131 |
. . . . . . . . . . . 12
⊢ (𝑛 ∩ 𝑚) = (𝑚 ∩ 𝑛) |
18 | | simp33 1209 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (𝑛 ∩ 𝑚) = ∅) |
19 | 17, 18 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (𝑚 ∩ 𝑛) = ∅) |
20 | | reldisj 4382 |
. . . . . . . . . . . 12
⊢ (𝑚 ⊆ ∪ 𝐽
→ ((𝑚 ∩ 𝑛) = ∅ ↔ 𝑚 ⊆ (∪ 𝐽
∖ 𝑛))) |
21 | 20 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝑚 ⊆ ∪ 𝐽
→ ((𝑚 ∩ 𝑛) = ∅ → 𝑚 ⊆ (∪ 𝐽
∖ 𝑛))) |
22 | 13, 19, 21 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑚 ⊆ (∪ 𝐽 ∖ 𝑛)) |
23 | 10, 22 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑇 ⊆ (∪ 𝐽 ∖ 𝑛)) |
24 | 6 | clsss2 22131 |
. . . . . . . . 9
⊢ (((∪ 𝐽
∖ 𝑛) ∈
(Clsd‘𝐽) ∧ 𝑇 ⊆ (∪ 𝐽
∖ 𝑛)) →
((cls‘𝐽)‘𝑇) ⊆ (∪ 𝐽
∖ 𝑛)) |
25 | 16, 23, 24 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ (∪
𝐽 ∖ 𝑛)) |
26 | 3 | sscond 4072 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (∪ 𝐽
∖ 𝑛) ⊆ (∪ 𝐽
∖ 𝑆)) |
27 | 25, 26 | sstrd 3927 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ (∪
𝐽 ∖ 𝑆)) |
28 | | disjdif 4402 |
. . . . . . . 8
⊢ (𝑆 ∩ (∪ 𝐽
∖ 𝑆)) =
∅ |
29 | 28 | a1i 11 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (𝑆 ∩ (∪ 𝐽 ∖ 𝑆)) = ∅) |
30 | 27, 29 | ssdisjdr 46042 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
31 | 6 | opncld 22092 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑚) ∈ (Clsd‘𝐽)) |
32 | 4, 11, 31 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (∪ 𝐽
∖ 𝑚) ∈
(Clsd‘𝐽)) |
33 | | reldisj 4382 |
. . . . . . . . . . . 12
⊢ (𝑛 ⊆ ∪ 𝐽
→ ((𝑛 ∩ 𝑚) = ∅ ↔ 𝑛 ⊆ (∪ 𝐽
∖ 𝑚))) |
34 | 33 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝑛 ⊆ ∪ 𝐽
→ ((𝑛 ∩ 𝑚) = ∅ → 𝑛 ⊆ (∪ 𝐽
∖ 𝑚))) |
35 | 8, 18, 34 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑛 ⊆ (∪ 𝐽 ∖ 𝑚)) |
36 | 3, 35 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → 𝑆 ⊆ (∪ 𝐽 ∖ 𝑚)) |
37 | 6 | clsss2 22131 |
. . . . . . . . 9
⊢ (((∪ 𝐽
∖ 𝑚) ∈
(Clsd‘𝐽) ∧ 𝑆 ⊆ (∪ 𝐽
∖ 𝑚)) →
((cls‘𝐽)‘𝑆) ⊆ (∪ 𝐽
∖ 𝑚)) |
38 | 32, 36, 37 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ (∪
𝐽 ∖ 𝑚)) |
39 | 10 | sscond 4072 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (∪ 𝐽
∖ 𝑚) ⊆ (∪ 𝐽
∖ 𝑇)) |
40 | 38, 39 | sstrd 3927 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ (∪
𝐽 ∖ 𝑇)) |
41 | | disjdifr 4403 |
. . . . . . . 8
⊢ ((∪ 𝐽
∖ 𝑇) ∩ 𝑇) = ∅ |
42 | 41 | a1i 11 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((∪ 𝐽
∖ 𝑇) ∩ 𝑇) = ∅) |
43 | 40, 42 | ssdisjd 46041 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
44 | 30, 43 | jca 511 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) |
45 | 9, 14, 44 | jca31 514 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) ∧ (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))) |
46 | 45 | 3exp 1117 |
. . 3
⊢ (𝐽 ∈ Top → ((𝑛 ∈ 𝐽 ∧ 𝑚 ∈ 𝐽) → ((𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))))) |
47 | 46 | rexlimdvv 3221 |
. 2
⊢ (𝐽 ∈ Top → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))) |
48 | 1, 2, 47 | sylc 65 |
1
⊢ (𝜑 → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))) |