Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seposep Structured version   Visualization version   GIF version

Theorem seposep 48605
Description: If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 48603. The relationship between separatedness and closure is also seen in isnrm 23364, isnrm2 23387, isnrm3 23388. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
seposep.2 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
Assertion
Ref Expression
seposep (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
Distinct variable groups:   𝑚,𝐽,𝑛   𝑆,𝑚,𝑛   𝑇,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem seposep
StepHypRef Expression
1 sepdisj.1 . 2 (𝜑𝐽 ∈ Top)
2 seposep.2 . 2 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
3 simp31 1209 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆𝑛)
4 simp1 1136 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
5 simp2l 1199 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
6 eqid 2740 . . . . . . . 8 𝐽 = 𝐽
76eltopss 22934 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑛𝐽) → 𝑛 𝐽)
84, 5, 7syl2anc 583 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛 𝐽)
93, 8sstrd 4019 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆 𝐽)
10 simp32 1210 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇𝑚)
11 simp2r 1200 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
126eltopss 22934 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑚𝐽) → 𝑚 𝐽)
134, 11, 12syl2anc 583 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚 𝐽)
1410, 13sstrd 4019 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇 𝐽)
156opncld 23062 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑛𝐽) → ( 𝐽𝑛) ∈ (Clsd‘𝐽))
164, 5, 15syl2anc 583 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑛) ∈ (Clsd‘𝐽))
17 incom 4230 . . . . . . . . . . . 12 (𝑛𝑚) = (𝑚𝑛)
18 simp33 1211 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
1917, 18eqtr3id 2794 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑛) = ∅)
20 reldisj 4476 . . . . . . . . . . . 12 (𝑚 𝐽 → ((𝑚𝑛) = ∅ ↔ 𝑚 ⊆ ( 𝐽𝑛)))
2120biimpd 229 . . . . . . . . . . 11 (𝑚 𝐽 → ((𝑚𝑛) = ∅ → 𝑚 ⊆ ( 𝐽𝑛)))
2213, 19, 21sylc 65 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚 ⊆ ( 𝐽𝑛))
2310, 22sstrd 4019 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇 ⊆ ( 𝐽𝑛))
246clsss2 23101 . . . . . . . . 9 ((( 𝐽𝑛) ∈ (Clsd‘𝐽) ∧ 𝑇 ⊆ ( 𝐽𝑛)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑛))
2516, 23, 24syl2anc 583 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑛))
263sscond 4169 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑛) ⊆ ( 𝐽𝑆))
2725, 26sstrd 4019 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑆))
28 disjdif 4495 . . . . . . . 8 (𝑆 ∩ ( 𝐽𝑆)) = ∅
2928a1i 11 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑆 ∩ ( 𝐽𝑆)) = ∅)
3027, 29ssdisjdr 48540 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
316opncld 23062 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
324, 11, 31syl2anc 583 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
33 reldisj 4476 . . . . . . . . . . . 12 (𝑛 𝐽 → ((𝑛𝑚) = ∅ ↔ 𝑛 ⊆ ( 𝐽𝑚)))
3433biimpd 229 . . . . . . . . . . 11 (𝑛 𝐽 → ((𝑛𝑚) = ∅ → 𝑛 ⊆ ( 𝐽𝑚)))
358, 18, 34sylc 65 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛 ⊆ ( 𝐽𝑚))
363, 35sstrd 4019 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆 ⊆ ( 𝐽𝑚))
376clsss2 23101 . . . . . . . . 9 ((( 𝐽𝑚) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ( 𝐽𝑚)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑚))
3832, 36, 37syl2anc 583 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑚))
3910sscond 4169 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑚) ⊆ ( 𝐽𝑇))
4038, 39sstrd 4019 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑇))
41 disjdifr 4496 . . . . . . . 8 (( 𝐽𝑇) ∩ 𝑇) = ∅
4241a1i 11 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (( 𝐽𝑇) ∩ 𝑇) = ∅)
4340, 42ssdisjd 48539 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
4430, 43jca 511 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
459, 14, 44jca31 514 . . . 4 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
46453exp 1119 . . 3 (𝐽 ∈ Top → ((𝑛𝐽𝑚𝐽) → ((𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))))
4746rexlimdvv 3218 . 2 (𝐽 ∈ Top → (∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))))
481, 2, 47sylc 65 1 (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  cin 3975  wss 3976  c0 4352   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator