Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seposep Structured version   Visualization version   GIF version

Theorem seposep 45658
Description: If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 45656. The relationship between separatedness and closure is also seen in isnrm 22048, isnrm2 22071, isnrm3 22072. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
seposep.2 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
Assertion
Ref Expression
seposep (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
Distinct variable groups:   𝑚,𝐽,𝑛   𝑆,𝑚,𝑛   𝑇,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem seposep
StepHypRef Expression
1 sepdisj.1 . 2 (𝜑𝐽 ∈ Top)
2 seposep.2 . 2 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
3 simp31 1206 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆𝑛)
4 simp1 1133 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
5 simp2l 1196 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
6 eqid 2758 . . . . . . . 8 𝐽 = 𝐽
76eltopss 21620 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑛𝐽) → 𝑛 𝐽)
84, 5, 7syl2anc 587 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛 𝐽)
93, 8sstrd 3904 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆 𝐽)
10 simp32 1207 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇𝑚)
11 simp2r 1197 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
126eltopss 21620 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑚𝐽) → 𝑚 𝐽)
134, 11, 12syl2anc 587 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚 𝐽)
1410, 13sstrd 3904 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇 𝐽)
156opncld 21746 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑛𝐽) → ( 𝐽𝑛) ∈ (Clsd‘𝐽))
164, 5, 15syl2anc 587 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑛) ∈ (Clsd‘𝐽))
17 incom 4108 . . . . . . . . . . . 12 (𝑛𝑚) = (𝑚𝑛)
18 simp33 1208 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
1917, 18eqtr3id 2807 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑛) = ∅)
20 reldisj 4351 . . . . . . . . . . . 12 (𝑚 𝐽 → ((𝑚𝑛) = ∅ ↔ 𝑚 ⊆ ( 𝐽𝑛)))
2120biimpd 232 . . . . . . . . . . 11 (𝑚 𝐽 → ((𝑚𝑛) = ∅ → 𝑚 ⊆ ( 𝐽𝑛)))
2213, 19, 21sylc 65 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚 ⊆ ( 𝐽𝑛))
2310, 22sstrd 3904 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇 ⊆ ( 𝐽𝑛))
246clsss2 21785 . . . . . . . . 9 ((( 𝐽𝑛) ∈ (Clsd‘𝐽) ∧ 𝑇 ⊆ ( 𝐽𝑛)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑛))
2516, 23, 24syl2anc 587 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑛))
263sscond 4049 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑛) ⊆ ( 𝐽𝑆))
2725, 26sstrd 3904 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑆))
28 disjdif 4371 . . . . . . . 8 (𝑆 ∩ ( 𝐽𝑆)) = ∅
2928a1i 11 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑆 ∩ ( 𝐽𝑆)) = ∅)
3027, 29ssdisjdr 45628 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
316opncld 21746 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
324, 11, 31syl2anc 587 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
33 reldisj 4351 . . . . . . . . . . . 12 (𝑛 𝐽 → ((𝑛𝑚) = ∅ ↔ 𝑛 ⊆ ( 𝐽𝑚)))
3433biimpd 232 . . . . . . . . . . 11 (𝑛 𝐽 → ((𝑛𝑚) = ∅ → 𝑛 ⊆ ( 𝐽𝑚)))
358, 18, 34sylc 65 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛 ⊆ ( 𝐽𝑚))
363, 35sstrd 3904 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆 ⊆ ( 𝐽𝑚))
376clsss2 21785 . . . . . . . . 9 ((( 𝐽𝑚) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ( 𝐽𝑚)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑚))
3832, 36, 37syl2anc 587 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑚))
3910sscond 4049 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑚) ⊆ ( 𝐽𝑇))
4038, 39sstrd 3904 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑇))
41 disjdifr 4372 . . . . . . . 8 (( 𝐽𝑇) ∩ 𝑇) = ∅
4241a1i 11 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (( 𝐽𝑇) ∩ 𝑇) = ∅)
4340, 42ssdisjd 45627 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
4430, 43jca 515 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
459, 14, 44jca31 518 . . . 4 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
46453exp 1116 . . 3 (𝐽 ∈ Top → ((𝑛𝐽𝑚𝐽) → ((𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))))
4746rexlimdvv 3217 . 2 (𝐽 ∈ Top → (∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))))
481, 2, 47sylc 65 1 (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  cdif 3857  cin 3859  wss 3860  c0 4227   cuni 4801  cfv 6340  Topctop 21606  Clsdccld 21729  clsccl 21731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-top 21607  df-cld 21732  df-cls 21734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator