Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seposep Structured version   Visualization version   GIF version

Theorem seposep 48956
Description: If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 48954. The relationship between separatedness and closure is also seen in isnrm 23248, isnrm2 23271, isnrm3 23272. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
seposep.2 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
Assertion
Ref Expression
seposep (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
Distinct variable groups:   𝑚,𝐽,𝑛   𝑆,𝑚,𝑛   𝑇,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem seposep
StepHypRef Expression
1 sepdisj.1 . 2 (𝜑𝐽 ∈ Top)
2 seposep.2 . 2 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
3 simp31 1210 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆𝑛)
4 simp1 1136 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
5 simp2l 1200 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
6 eqid 2731 . . . . . . . 8 𝐽 = 𝐽
76eltopss 22820 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑛𝐽) → 𝑛 𝐽)
84, 5, 7syl2anc 584 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛 𝐽)
93, 8sstrd 3945 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆 𝐽)
10 simp32 1211 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇𝑚)
11 simp2r 1201 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
126eltopss 22820 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑚𝐽) → 𝑚 𝐽)
134, 11, 12syl2anc 584 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚 𝐽)
1410, 13sstrd 3945 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇 𝐽)
156opncld 22946 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑛𝐽) → ( 𝐽𝑛) ∈ (Clsd‘𝐽))
164, 5, 15syl2anc 584 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑛) ∈ (Clsd‘𝐽))
17 incom 4159 . . . . . . . . . . . 12 (𝑛𝑚) = (𝑚𝑛)
18 simp33 1212 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
1917, 18eqtr3id 2780 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑛) = ∅)
20 reldisj 4403 . . . . . . . . . . . 12 (𝑚 𝐽 → ((𝑚𝑛) = ∅ ↔ 𝑚 ⊆ ( 𝐽𝑛)))
2120biimpd 229 . . . . . . . . . . 11 (𝑚 𝐽 → ((𝑚𝑛) = ∅ → 𝑚 ⊆ ( 𝐽𝑛)))
2213, 19, 21sylc 65 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚 ⊆ ( 𝐽𝑛))
2310, 22sstrd 3945 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑇 ⊆ ( 𝐽𝑛))
246clsss2 22985 . . . . . . . . 9 ((( 𝐽𝑛) ∈ (Clsd‘𝐽) ∧ 𝑇 ⊆ ( 𝐽𝑛)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑛))
2516, 23, 24syl2anc 584 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑛))
263sscond 4096 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑛) ⊆ ( 𝐽𝑆))
2725, 26sstrd 3945 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑇) ⊆ ( 𝐽𝑆))
28 disjdif 4422 . . . . . . . 8 (𝑆 ∩ ( 𝐽𝑆)) = ∅
2928a1i 11 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑆 ∩ ( 𝐽𝑆)) = ∅)
3027, 29ssdisjdr 48839 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅)
316opncld 22946 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑚𝐽) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
324, 11, 31syl2anc 584 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑚) ∈ (Clsd‘𝐽))
33 reldisj 4403 . . . . . . . . . . . 12 (𝑛 𝐽 → ((𝑛𝑚) = ∅ ↔ 𝑛 ⊆ ( 𝐽𝑚)))
3433biimpd 229 . . . . . . . . . . 11 (𝑛 𝐽 → ((𝑛𝑚) = ∅ → 𝑛 ⊆ ( 𝐽𝑚)))
358, 18, 34sylc 65 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛 ⊆ ( 𝐽𝑚))
363, 35sstrd 3945 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑆 ⊆ ( 𝐽𝑚))
376clsss2 22985 . . . . . . . . 9 ((( 𝐽𝑚) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ ( 𝐽𝑚)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑚))
3832, 36, 37syl2anc 584 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑚))
3910sscond 4096 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ( 𝐽𝑚) ⊆ ( 𝐽𝑇))
4038, 39sstrd 3945 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((cls‘𝐽)‘𝑆) ⊆ ( 𝐽𝑇))
41 disjdifr 4423 . . . . . . . 8 (( 𝐽𝑇) ∩ 𝑇) = ∅
4241a1i 11 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (( 𝐽𝑇) ∩ 𝑇) = ∅)
4340, 42ssdisjd 48838 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
4430, 43jca 511 . . . . 5 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
459, 14, 44jca31 514 . . . 4 ((𝐽 ∈ Top ∧ (𝑛𝐽𝑚𝐽) ∧ (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
46453exp 1119 . . 3 (𝐽 ∈ Top → ((𝑛𝐽𝑚𝐽) → ((𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))))
4746rexlimdvv 3188 . 2 (𝐽 ∈ Top → (∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅) → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))))
481, 2, 47sylc 65 1 (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cdif 3899  cin 3901  wss 3902  c0 4283   cuni 4859  cfv 6481  Topctop 22806  Clsdccld 22929  clsccl 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22807  df-cld 22932  df-cls 22934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator