MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdisj Structured version   Visualization version   GIF version

Theorem ssdisj 4223
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
ssdisj ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)

Proof of Theorem ssdisj
StepHypRef Expression
1 ssrin 4034 . . 3 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 eqimss 3854 . . 3 ((𝐵𝐶) = ∅ → (𝐵𝐶) ⊆ ∅)
31, 2sylan9ss 3812 . 2 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) ⊆ ∅)
4 ss0 4171 . 2 ((𝐴𝐶) ⊆ ∅ → (𝐴𝐶) = ∅)
53, 4syl 17 1 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  cin 3769  wss 3770  c0 4116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2778
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-v 3388  df-dif 3773  df-in 3777  df-ss 3784  df-nul 4117
This theorem is referenced by:  djudisj  5779  fimacnvdisj  6299  marypha1lem  8582  djuin  9031  ackbij1lem16  9346  ackbij1lem18  9348  fin23lem20  9448  fin23lem30  9453  elcls3  21215  neindisj  21249  imadifxp  29930  ldgenpisyslem1  30741  chtvalz  31226  diophren  38158
  Copyright terms: Public domain W3C validator