| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdisj | Structured version Visualization version GIF version | ||
| Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4192 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | eqimss 3993 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = ∅ → (𝐵 ∩ 𝐶) ⊆ ∅) | |
| 3 | 1, 2 | sylan9ss 3948 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
| 4 | ss0 4352 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: djudisj 6114 fimacnvdisj 6701 marypha1lem 9317 djuin 9811 ackbij1lem16 10125 ackbij1lem18 10127 fin23lem20 10228 fin23lem30 10233 psdmul 22082 elcls3 22999 neindisj 23033 imadifxp 32579 ldgenpisyslem1 34174 chtvalz 34640 pthhashvtx 35170 diophren 42852 |
| Copyright terms: Public domain | W3C validator |