![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdisj | Structured version Visualization version GIF version |
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4232 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | eqimss 4039 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = ∅ → (𝐵 ∩ 𝐶) ⊆ ∅) | |
3 | 1, 2 | sylan9ss 3994 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
4 | ss0 4397 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 |
This theorem is referenced by: djudisj 6165 fimacnvdisj 6768 marypha1lem 9430 djuin 9915 ackbij1lem16 10232 ackbij1lem18 10234 fin23lem20 10334 fin23lem30 10339 elcls3 22807 neindisj 22841 imadifxp 32099 ldgenpisyslem1 33459 chtvalz 33939 pthhashvtx 34416 diophren 41853 |
Copyright terms: Public domain | W3C validator |