Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdisj | Structured version Visualization version GIF version |
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4167 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | eqimss 3977 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = ∅ → (𝐵 ∩ 𝐶) ⊆ ∅) | |
3 | 1, 2 | sylan9ss 3934 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
4 | ss0 4332 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: djudisj 6070 fimacnvdisj 6652 marypha1lem 9192 djuin 9676 ackbij1lem16 9991 ackbij1lem18 9993 fin23lem20 10093 fin23lem30 10098 elcls3 22234 neindisj 22268 imadifxp 30940 ldgenpisyslem1 32131 chtvalz 32609 pthhashvtx 33089 diophren 40635 |
Copyright terms: Public domain | W3C validator |