| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdisj | Structured version Visualization version GIF version | ||
| Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4241 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | eqimss 4041 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = ∅ → (𝐵 ∩ 𝐶) ⊆ ∅) | |
| 3 | 1, 2 | sylan9ss 3996 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
| 4 | ss0 4401 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3953 df-in 3957 df-ss 3967 df-nul 4333 |
| This theorem is referenced by: djudisj 6186 fimacnvdisj 6785 marypha1lem 9474 djuin 9959 ackbij1lem16 10275 ackbij1lem18 10277 fin23lem20 10378 fin23lem30 10383 psdmul 22171 elcls3 23092 neindisj 23126 imadifxp 32615 ldgenpisyslem1 34165 chtvalz 34645 pthhashvtx 35134 diophren 42829 |
| Copyright terms: Public domain | W3C validator |