| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdisj | Structured version Visualization version GIF version | ||
| Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4205 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | eqimss 4005 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = ∅ → (𝐵 ∩ 𝐶) ⊆ ∅) | |
| 3 | 1, 2 | sylan9ss 3960 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
| 4 | ss0 4365 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: djudisj 6140 fimacnvdisj 6738 marypha1lem 9384 djuin 9871 ackbij1lem16 10187 ackbij1lem18 10189 fin23lem20 10290 fin23lem30 10295 psdmul 22053 elcls3 22970 neindisj 23004 imadifxp 32530 ldgenpisyslem1 34153 chtvalz 34620 pthhashvtx 35115 diophren 42801 |
| Copyright terms: Public domain | W3C validator |