| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssficl | Structured version Visualization version GIF version | ||
| Description: The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| ssficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} |
| Ref | Expression |
|---|---|
| ssficl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} | |
| 2 | vex 3442 | . . 3 ⊢ 𝑥 ∈ V | |
| 3 | 2 | inex1 5259 | . 2 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 4 | sseq1 3957 | . 2 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → (𝑧 ⊆ 𝐵 ↔ (𝑥 ∩ 𝑦) ⊆ 𝐵)) | |
| 5 | sseq1 3957 | . 2 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 6 | sseq1 3957 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) | |
| 7 | ssinss1 4197 | . . 3 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ∩ 𝑦) ⊆ 𝐵) | |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝑥 ∩ 𝑦) ⊆ 𝐵) |
| 9 | 1, 3, 4, 5, 6, 8 | cllem0 43673 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3049 Vcvv 3438 ∩ cin 3898 ⊆ wss 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-v 3440 df-in 3906 df-ss 3916 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |