Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
Ref | Expression |
---|---|
ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4159 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | sstr2 3924 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: inss 4169 wfrlem4OLD 8114 wfrlem5OLD 8115 fipwuni 9115 ssfin4 9997 insubm 18372 distop 22053 fctop 22062 cctop 22064 ntrin 22120 innei 22184 lly1stc 22555 txcnp 22679 isfild 22917 utoptop 23294 restmetu 23632 lecmi 29865 mdslj2i 30583 mdslmd1lem1 30588 mdslmd1lem2 30589 elpwincl1 30775 pnfneige0 31803 inelcarsg 32178 ballotlemfrc 32393 bnj1177 32886 bnj1311 32904 cldbnd 34442 neiin 34448 ontgval 34547 mblfinlem4 35744 pmodlem1 37787 pmodlem2 37788 pmod1i 37789 pmod2iN 37790 pmodl42N 37792 dochdmj1 39331 ssficl 41065 ntrclskb 41568 ntrclsk13 41570 ntrneik3 41595 ntrneik13 41597 ssinss1d 42485 icccncfext 43318 fourierdlem48 43585 fourierdlem49 43586 fourierdlem113 43650 caragendifcl 43942 omelesplit 43946 carageniuncllem2 43950 carageniuncl 43951 |
Copyright terms: Public domain | W3C validator |