| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| Ref | Expression |
|---|---|
| ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4188 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | sstr2 3942 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3902 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ss 3920 |
| This theorem is referenced by: ssinss1d 4198 inss 4199 inindif 4326 fipwuni 9316 ssfin4 10204 insubm 18692 distop 22880 fctop 22889 cctop 22891 ntrin 22946 innei 23010 lly1stc 23381 txcnp 23505 isfild 23743 utoptop 24120 restmetu 24456 lecmi 31546 mdslj2i 32264 mdslmd1lem1 32269 mdslmd1lem2 32270 elpwincl1 32469 pnfneige0 33918 inelcarsg 34279 ballotlemfrc 34495 bnj1177 34973 bnj1311 34991 cldbnd 36304 neiin 36310 ontgval 36409 mblfinlem4 37644 pmodlem1 39829 pmodlem2 39830 pmod1i 39831 pmod2iN 39832 pmodl42N 39834 dochdmj1 41373 redvmptabs 42337 ssficl 43546 ntrclskb 44046 ntrclsk13 44048 ntrneik3 44073 ntrneik13 44075 sswfaxreg 44965 icccncfext 45872 fourierdlem48 46139 fourierdlem49 46140 fourierdlem113 46204 caragendifcl 46499 omelesplit 46503 carageniuncllem2 46507 carageniuncl 46508 |
| Copyright terms: Public domain | W3C validator |