| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| Ref | Expression |
|---|---|
| ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4184 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | sstr2 3936 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3896 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: ssinss1d 4194 inss 4195 inindif 4322 fipwuni 9310 ssfin4 10201 insubm 18726 distop 22910 fctop 22919 cctop 22921 ntrin 22976 innei 23040 lly1stc 23411 txcnp 23535 isfild 23773 utoptop 24149 restmetu 24485 lecmi 31582 mdslj2i 32300 mdslmd1lem1 32305 mdslmd1lem2 32306 elpwincl1 32505 pnfneige0 33964 inelcarsg 34324 ballotlemfrc 34540 bnj1177 35018 bnj1311 35036 cldbnd 36370 neiin 36376 ontgval 36475 mblfinlem4 37710 pmodlem1 39955 pmodlem2 39956 pmod1i 39957 pmod2iN 39958 pmodl42N 39960 dochdmj1 41499 redvmptabs 42463 ssficl 43672 ntrclskb 44172 ntrclsk13 44174 ntrneik3 44199 ntrneik13 44201 sswfaxreg 45090 icccncfext 45995 fourierdlem48 46262 fourierdlem49 46263 fourierdlem113 46327 caragendifcl 46622 omelesplit 46626 carageniuncllem2 46630 carageniuncl 46631 |
| Copyright terms: Public domain | W3C validator |