| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| Ref | Expression |
|---|---|
| ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4200 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | sstr2 3953 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: ssinss1d 4210 inss 4211 inindif 4338 fipwuni 9377 ssfin4 10263 insubm 18745 distop 22882 fctop 22891 cctop 22893 ntrin 22948 innei 23012 lly1stc 23383 txcnp 23507 isfild 23745 utoptop 24122 restmetu 24458 lecmi 31531 mdslj2i 32249 mdslmd1lem1 32254 mdslmd1lem2 32255 elpwincl1 32454 pnfneige0 33941 inelcarsg 34302 ballotlemfrc 34518 bnj1177 34996 bnj1311 35014 cldbnd 36314 neiin 36320 ontgval 36419 mblfinlem4 37654 pmodlem1 39840 pmodlem2 39841 pmod1i 39842 pmod2iN 39843 pmodl42N 39845 dochdmj1 41384 redvmptabs 42348 ssficl 43558 ntrclskb 44058 ntrclsk13 44060 ntrneik3 44085 ntrneik13 44087 sswfaxreg 44977 icccncfext 45885 fourierdlem48 46152 fourierdlem49 46153 fourierdlem113 46217 caragendifcl 46512 omelesplit 46516 carageniuncllem2 46520 carageniuncl 46521 |
| Copyright terms: Public domain | W3C validator |