| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| Ref | Expression |
|---|---|
| ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | sstr2 3956 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: ssinss1d 4213 inss 4214 inindif 4341 fipwuni 9384 ssfin4 10270 insubm 18752 distop 22889 fctop 22898 cctop 22900 ntrin 22955 innei 23019 lly1stc 23390 txcnp 23514 isfild 23752 utoptop 24129 restmetu 24465 lecmi 31538 mdslj2i 32256 mdslmd1lem1 32261 mdslmd1lem2 32262 elpwincl1 32461 pnfneige0 33948 inelcarsg 34309 ballotlemfrc 34525 bnj1177 35003 bnj1311 35021 cldbnd 36321 neiin 36327 ontgval 36426 mblfinlem4 37661 pmodlem1 39847 pmodlem2 39848 pmod1i 39849 pmod2iN 39850 pmodl42N 39852 dochdmj1 41391 redvmptabs 42355 ssficl 43565 ntrclskb 44065 ntrclsk13 44067 ntrneik3 44092 ntrneik13 44094 sswfaxreg 44984 icccncfext 45892 fourierdlem48 46159 fourierdlem49 46160 fourierdlem113 46224 caragendifcl 46519 omelesplit 46523 carageniuncllem2 46527 carageniuncl 46528 |
| Copyright terms: Public domain | W3C validator |