Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
Ref | Expression |
---|---|
ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4162 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | sstr2 3928 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: inss 4172 wfrlem4OLD 8143 wfrlem5OLD 8144 fipwuni 9185 ssfin4 10066 insubm 18457 distop 22145 fctop 22154 cctop 22156 ntrin 22212 innei 22276 lly1stc 22647 txcnp 22771 isfild 23009 utoptop 23386 restmetu 23726 lecmi 29964 mdslj2i 30682 mdslmd1lem1 30687 mdslmd1lem2 30688 elpwincl1 30874 pnfneige0 31901 inelcarsg 32278 ballotlemfrc 32493 bnj1177 32986 bnj1311 33004 cldbnd 34515 neiin 34521 ontgval 34620 mblfinlem4 35817 pmodlem1 37860 pmodlem2 37861 pmod1i 37862 pmod2iN 37863 pmodl42N 37865 dochdmj1 39404 ssficl 41176 ntrclskb 41679 ntrclsk13 41681 ntrneik3 41706 ntrneik13 41708 ssinss1d 42596 icccncfext 43428 fourierdlem48 43695 fourierdlem49 43696 fourierdlem113 43760 caragendifcl 44052 omelesplit 44056 carageniuncllem2 44060 carageniuncl 44061 |
Copyright terms: Public domain | W3C validator |