| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| Ref | Expression |
|---|---|
| ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4196 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | sstr2 3950 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3910 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: ssinss1d 4206 inss 4207 inindif 4334 fipwuni 9353 ssfin4 10239 insubm 18727 distop 22915 fctop 22924 cctop 22926 ntrin 22981 innei 23045 lly1stc 23416 txcnp 23540 isfild 23778 utoptop 24155 restmetu 24491 lecmi 31581 mdslj2i 32299 mdslmd1lem1 32304 mdslmd1lem2 32305 elpwincl1 32504 pnfneige0 33934 inelcarsg 34295 ballotlemfrc 34511 bnj1177 34989 bnj1311 35007 cldbnd 36307 neiin 36313 ontgval 36412 mblfinlem4 37647 pmodlem1 39833 pmodlem2 39834 pmod1i 39835 pmod2iN 39836 pmodl42N 39838 dochdmj1 41377 redvmptabs 42341 ssficl 43551 ntrclskb 44051 ntrclsk13 44053 ntrneik3 44078 ntrneik13 44080 sswfaxreg 44970 icccncfext 45878 fourierdlem48 46145 fourierdlem49 46146 fourierdlem113 46210 caragendifcl 46505 omelesplit 46509 carageniuncllem2 46513 carageniuncl 46514 |
| Copyright terms: Public domain | W3C validator |