Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
Ref | Expression |
---|---|
ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4143 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | sstr2 3908 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3865 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: inss 4153 wfrlem4 8058 wfrlem5 8059 fipwuni 9042 ssfin4 9924 insubm 18245 distop 21892 fctop 21901 cctop 21903 ntrin 21958 innei 22022 lly1stc 22393 txcnp 22517 isfild 22755 utoptop 23132 restmetu 23468 lecmi 29683 mdslj2i 30401 mdslmd1lem1 30406 mdslmd1lem2 30407 elpwincl1 30593 pnfneige0 31615 inelcarsg 31990 ballotlemfrc 32205 bnj1177 32699 bnj1311 32717 cldbnd 34252 neiin 34258 ontgval 34357 mblfinlem4 35554 pmodlem1 37597 pmodlem2 37598 pmod1i 37599 pmod2iN 37600 pmodl42N 37602 dochdmj1 39141 ssficl 40852 ntrclskb 41356 ntrclsk13 41358 ntrneik3 41383 ntrneik13 41385 ssinss1d 42269 icccncfext 43103 fourierdlem48 43370 fourierdlem49 43371 fourierdlem113 43435 caragendifcl 43727 omelesplit 43731 carageniuncllem2 43735 carageniuncl 43736 |
Copyright terms: Public domain | W3C validator |