| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version | ||
| Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| Ref | Expression |
|---|---|
| ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4212 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | sstr2 3965 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: ssinss1d 4222 inss 4223 inindif 4350 wfrlem4OLD 8326 wfrlem5OLD 8327 fipwuni 9438 ssfin4 10324 insubm 18796 distop 22933 fctop 22942 cctop 22944 ntrin 22999 innei 23063 lly1stc 23434 txcnp 23558 isfild 23796 utoptop 24173 restmetu 24509 lecmi 31583 mdslj2i 32301 mdslmd1lem1 32306 mdslmd1lem2 32307 elpwincl1 32506 pnfneige0 33982 inelcarsg 34343 ballotlemfrc 34559 bnj1177 35037 bnj1311 35055 cldbnd 36344 neiin 36350 ontgval 36449 mblfinlem4 37684 pmodlem1 39865 pmodlem2 39866 pmod1i 39867 pmod2iN 39868 pmodl42N 39870 dochdmj1 41409 redvmptabs 42403 ssficl 43593 ntrclskb 44093 ntrclsk13 44095 ntrneik3 44120 ntrneik13 44122 sswfaxreg 45012 icccncfext 45916 fourierdlem48 46183 fourierdlem49 46184 fourierdlem113 46248 caragendifcl 46543 omelesplit 46547 carageniuncllem2 46551 carageniuncl 46552 |
| Copyright terms: Public domain | W3C validator |