![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
Ref | Expression |
---|---|
ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4258 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | sstr2 4015 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: inss 4268 wfrlem4OLD 8368 wfrlem5OLD 8369 fipwuni 9495 ssfin4 10379 insubm 18853 distop 23023 fctop 23032 cctop 23034 ntrin 23090 innei 23154 lly1stc 23525 txcnp 23649 isfild 23887 utoptop 24264 restmetu 24604 lecmi 31634 mdslj2i 32352 mdslmd1lem1 32357 mdslmd1lem2 32358 elpwincl1 32555 pnfneige0 33897 inelcarsg 34276 ballotlemfrc 34491 bnj1177 34982 bnj1311 35000 cldbnd 36292 neiin 36298 ontgval 36397 mblfinlem4 37620 pmodlem1 39803 pmodlem2 39804 pmod1i 39805 pmod2iN 39806 pmodl42N 39808 dochdmj1 41347 ssficl 43531 ntrclskb 44031 ntrclsk13 44033 ntrneik3 44058 ntrneik13 44060 ssinss1d 44950 icccncfext 45808 fourierdlem48 46075 fourierdlem49 46076 fourierdlem113 46140 caragendifcl 46435 omelesplit 46439 carageniuncllem2 46443 carageniuncl 46444 |
Copyright terms: Public domain | W3C validator |