![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssinss1 | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
Ref | Expression |
---|---|
ssinss1 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4245 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | sstr2 4002 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3962 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 |
This theorem is referenced by: inss 4255 inindif 4381 wfrlem4OLD 8351 wfrlem5OLD 8352 fipwuni 9464 ssfin4 10348 insubm 18844 distop 23018 fctop 23027 cctop 23029 ntrin 23085 innei 23149 lly1stc 23520 txcnp 23644 isfild 23882 utoptop 24259 restmetu 24599 lecmi 31631 mdslj2i 32349 mdslmd1lem1 32354 mdslmd1lem2 32355 elpwincl1 32553 pnfneige0 33912 inelcarsg 34293 ballotlemfrc 34508 bnj1177 34999 bnj1311 35017 cldbnd 36309 neiin 36315 ontgval 36414 mblfinlem4 37647 pmodlem1 39829 pmodlem2 39830 pmod1i 39831 pmod2iN 39832 pmodl42N 39834 dochdmj1 41373 redvmptabs 42369 ssficl 43559 ntrclskb 44059 ntrclsk13 44061 ntrneik3 44086 ntrneik13 44088 ssinss1d 44988 icccncfext 45843 fourierdlem48 46110 fourierdlem49 46111 fourierdlem113 46175 caragendifcl 46470 omelesplit 46474 carageniuncllem2 46478 carageniuncl 46479 |
Copyright terms: Public domain | W3C validator |