![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > superuncl | Structured version Visualization version GIF version |
Description: The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
Ref | Expression |
---|---|
superficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} |
Ref | Expression |
---|---|
superuncl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | superficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} | |
2 | vex 3477 | . . 3 ⊢ 𝑥 ∈ V | |
3 | vex 3477 | . . 3 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | unex 7756 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
5 | sseq2 4008 | . 2 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → (𝐵 ⊆ 𝑧 ↔ 𝐵 ⊆ (𝑥 ∪ 𝑦))) | |
6 | sseq2 4008 | . 2 ⊢ (𝑧 = 𝑥 → (𝐵 ⊆ 𝑧 ↔ 𝐵 ⊆ 𝑥)) | |
7 | sseq2 4008 | . 2 ⊢ (𝑧 = 𝑦 → (𝐵 ⊆ 𝑧 ↔ 𝐵 ⊆ 𝑦)) | |
8 | ssun3 4176 | . . 3 ⊢ (𝐵 ⊆ 𝑥 → 𝐵 ⊆ (𝑥 ∪ 𝑦)) | |
9 | 8 | adantr 479 | . 2 ⊢ ((𝐵 ⊆ 𝑥 ∧ 𝐵 ⊆ 𝑦) → 𝐵 ⊆ (𝑥 ∪ 𝑦)) |
10 | 1, 4, 5, 6, 7, 9 | cllem0 43045 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2705 ∀wral 3058 Vcvv 3473 ∪ cun 3947 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-sn 4633 df-pr 4635 df-uni 4913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |