Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  superuncl Structured version   Visualization version   GIF version

Theorem superuncl 43047
Description: The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.)
Hypothesis
Ref Expression
superficl.a 𝐴 = {𝑧𝐵𝑧}
Assertion
Ref Expression
superuncl 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem superuncl
StepHypRef Expression
1 superficl.a . 2 𝐴 = {𝑧𝐵𝑧}
2 vex 3477 . . 3 𝑥 ∈ V
3 vex 3477 . . 3 𝑦 ∈ V
42, 3unex 7756 . 2 (𝑥𝑦) ∈ V
5 sseq2 4008 . 2 (𝑧 = (𝑥𝑦) → (𝐵𝑧𝐵 ⊆ (𝑥𝑦)))
6 sseq2 4008 . 2 (𝑧 = 𝑥 → (𝐵𝑧𝐵𝑥))
7 sseq2 4008 . 2 (𝑧 = 𝑦 → (𝐵𝑧𝐵𝑦))
8 ssun3 4176 . . 3 (𝐵𝑥𝐵 ⊆ (𝑥𝑦))
98adantr 479 . 2 ((𝐵𝑥𝐵𝑦) → 𝐵 ⊆ (𝑥𝑦))
101, 4, 5, 6, 7, 9cllem0 43045 1 𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cab 2705  wral 3058  Vcvv 3473  cun 3947  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-sn 4633  df-pr 4635  df-uni 4913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator