| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > superuncl | Structured version Visualization version GIF version | ||
| Description: The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| superficl.a | ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} |
| Ref | Expression |
|---|---|
| superuncl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | superficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} | |
| 2 | vex 3442 | . . 3 ⊢ 𝑥 ∈ V | |
| 3 | vex 3442 | . . 3 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | unex 7684 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 5 | sseq2 3964 | . 2 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → (𝐵 ⊆ 𝑧 ↔ 𝐵 ⊆ (𝑥 ∪ 𝑦))) | |
| 6 | sseq2 3964 | . 2 ⊢ (𝑧 = 𝑥 → (𝐵 ⊆ 𝑧 ↔ 𝐵 ⊆ 𝑥)) | |
| 7 | sseq2 3964 | . 2 ⊢ (𝑧 = 𝑦 → (𝐵 ⊆ 𝑧 ↔ 𝐵 ⊆ 𝑦)) | |
| 8 | ssun3 4133 | . . 3 ⊢ (𝐵 ⊆ 𝑥 → 𝐵 ⊆ (𝑥 ∪ 𝑦)) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐵 ⊆ 𝑥 ∧ 𝐵 ⊆ 𝑦) → 𝐵 ⊆ (𝑥 ∪ 𝑦)) |
| 10 | 1, 4, 5, 6, 7, 9 | cllem0 43542 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |