MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspred Structured version   Visualization version   GIF version

Theorem sspred 6200
Description: Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.)
Assertion
Ref Expression
sspred ((𝐵𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem sspred
StepHypRef Expression
1 sseqin2 4146 . 2 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
2 df-pred 6191 . . . 4 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
32sseq1i 3945 . . 3 (Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 ↔ (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐵)
4 df-ss 3900 . . 3 ((𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐵 ↔ ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ 𝐵) = (𝐴 ∩ (𝑅 “ {𝑋})))
5 in32 4152 . . . 4 ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ 𝐵) = ((𝐴𝐵) ∩ (𝑅 “ {𝑋}))
65eqeq1i 2743 . . 3 (((𝐴 ∩ (𝑅 “ {𝑋})) ∩ 𝐵) = (𝐴 ∩ (𝑅 “ {𝑋})) ↔ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})))
73, 4, 63bitri 296 . 2 (Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 ↔ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})))
8 ineq1 4136 . . . . . 6 ((𝐴𝐵) = 𝐵 → ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐵 ∩ (𝑅 “ {𝑋})))
98eqeq1d 2740 . . . . 5 ((𝐴𝐵) = 𝐵 → (((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})) ↔ (𝐵 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))))
109biimpa 476 . . . 4 (((𝐴𝐵) = 𝐵 ∧ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))) → (𝐵 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})))
11 df-pred 6191 . . . 4 Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (𝑅 “ {𝑋}))
1210, 11, 23eqtr4g 2804 . . 3 (((𝐴𝐵) = 𝐵 ∧ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))) → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))
1312eqcomd 2744 . 2 (((𝐴𝐵) = 𝐵 ∧ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
141, 7, 13syl2anb 597 1 ((𝐵𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cin 3882  wss 3883  {csn 4558  ccnv 5579  cima 5583  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pred 6191
This theorem is referenced by:  frmin  9438
  Copyright terms: Public domain W3C validator