MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspred Structured version   Visualization version   GIF version

Theorem sspred 6211
Description: Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.)
Assertion
Ref Expression
sspred ((𝐵𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem sspred
StepHypRef Expression
1 sseqin2 4149 . 2 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
2 df-pred 6202 . . . 4 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
32sseq1i 3949 . . 3 (Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 ↔ (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐵)
4 df-ss 3904 . . 3 ((𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐵 ↔ ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ 𝐵) = (𝐴 ∩ (𝑅 “ {𝑋})))
5 in32 4155 . . . 4 ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ 𝐵) = ((𝐴𝐵) ∩ (𝑅 “ {𝑋}))
65eqeq1i 2743 . . 3 (((𝐴 ∩ (𝑅 “ {𝑋})) ∩ 𝐵) = (𝐴 ∩ (𝑅 “ {𝑋})) ↔ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})))
73, 4, 63bitri 297 . 2 (Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 ↔ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})))
8 ineq1 4139 . . . . . 6 ((𝐴𝐵) = 𝐵 → ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐵 ∩ (𝑅 “ {𝑋})))
98eqeq1d 2740 . . . . 5 ((𝐴𝐵) = 𝐵 → (((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})) ↔ (𝐵 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))))
109biimpa 477 . . . 4 (((𝐴𝐵) = 𝐵 ∧ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))) → (𝐵 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋})))
11 df-pred 6202 . . . 4 Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (𝑅 “ {𝑋}))
1210, 11, 23eqtr4g 2803 . . 3 (((𝐴𝐵) = 𝐵 ∧ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))) → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))
1312eqcomd 2744 . 2 (((𝐴𝐵) = 𝐵 ∧ ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ (𝑅 “ {𝑋}))) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
141, 7, 13syl2anb 598 1 ((𝐵𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  cin 3886  wss 3887  {csn 4561  ccnv 5588  cima 5592  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-pred 6202
This theorem is referenced by:  frmin  9507
  Copyright terms: Public domain W3C validator